Archivi tag: Temperature

Lezione 10 – Corso di Elettronica Creativa con Arduino Sensor Kit

Cenni teorici

Cos’è la pressione atmosferica?

La pressione atmosferica è la forza esercitata dall’aria su ogni unità di superficie. Viene misurata in pascal (Pa) o, più comunemente, in hectopascal (hPa) dove 1 hPa = 100 Pa.

Il sensore BMP280

Il BMP280 è un sensore barometrico assoluto prodotto da Bosch Sensortec. Le sue caratteristiche principali:

  • Campo di misura: 300 – 1100 hPa (≈ -500 m / +9000 m s.l.m.)
  • Accuratezza assoluta tip. ±1 hPa; accuratezza relativa ±0.12 hPa (≈ ±1 m)
  • Interfacce: I²C (fino a 3.4 MHz) e SPI
  • Consumo: 2.7 µA @ 1 Hz in modalità normale
  • Range termico: –40 … +85 °C

Collegamenti

Collegate il cavo Grove tra il connettore del sensore e la porta I²C (qualsiasi) sullo shield.

Installazione libreria

Sicuramente è un’operazione che avete già eseguito, in ogni caso lo ricordo:

  • Arduino IDE > Gestione librerie > cerca “Arduino_SensorKit”.
  • Installate la libreria (include automaticamente LPS22HB, HTS221, OLED, ecc.)

 Esempio 01: Sketch base – Lettura e stampa dati su Serial Monitor

/*
  Prof. Maffucci Michele
  02.10.2025
  LPS22HB del Sensor Kit
  Stampa valori su Serial Monitor
*/

#include <Arduino_SensorKit.h>   // include unico per tutti i sensori

void setup() {
  Serial.begin(9600);
  Pressure.begin();              // inizializza il barometro
}

void loop() {
  // La libreria restituisce:
  // - pressione in pascal
  // - temperatura in gradi Celsius
  // - altitudine in metri rispetto a 1013,25 hPa

float pressionePa  = Pressure.readPressure();
  float temperaturaC = Pressure.readTemperature();
  float altitudineM  = Pressure.readAltitude();

// conversione pa → hPa per leggibilità
  float pressioneHpa = pressionePa / 100.0;

Serial.print(F("Pressione: "));
  Serial.print(pressioneHpa, 2);
  Serial.print(F(" hPa\tTemperatura: "));
  Serial.print(temperaturaC, 2);
  Serial.print(F(" °C\tAltitudine: "));
  Serial.print(altitudineM, 1);
  Serial.println(F(" m"));

delay(1000);
}

Ricordo che, come già indicato nelle precedenti lezioni, la F(…) (maiuscola), inserita all’interno delle Serial.print(), è una macro di Arduino che serve a mettere una stringa letterale in memoria flash (PROGMEM) invece che copiarla nella SRAM al momento della stampa.

Perché è utile utilizzare F

  • Le board come Arduino UNO (AVR) hanno poca SRAM (2 KB).
  • Senza (), ogni stringa tra virgolette ("Pressione: ") viene copiata in SRAM prima di stamparla > spreco di RAM.
  • Con F("Pressione: "), la stringa resta in flash e Serial.print() la legge direttamente da lì > RAM risparmiata.

Come si usa

Funziona con tutte le funzioni che derivano da Print (es. Serial.print, Serial.println, spesso anche display che usano print in stile Arduino):

Serial.print(F("Pressione: "));
Serial.println(F(" hPa"));

Quando usarla

  • Frasi/titoli/menu costanti e ripetute (log su Serial, messaggi di errore, etichette).
  • Con progetti in cui si ha scarsa disponibilità di RAM (UNO/Nano classici) può fare la differenza.

Limiti

  • Non puoi concatenare direttamente elementi come F(“A”) + F(“B”).
  • Evitare di mescolarla con String in modo implicito (meglio stampare pezzi separati).
  • Funzioni come sprintf non leggono da flash; su AVR esistono versioni “_P” (es. sprintf_P) per farlo.

La struttura delle funzioni (Pressure.begin(), Pressure.readPressure(), ecc.) è la stessa mostrata negli esempi ufficiali di Arduino.

 Esempio 02: Lettura e stampa dati su Serial Monitor e display OLED

Abbiamo già visto l’uso del display OLED nella lezione: Lezione 9 – Corso di Elettronica Creativa con Arduino Sensor Kit vediamo ora come mostrare i valori di: pressione, temperatura e altitudine anche sul display OLED.

/*
  Prof. Maffucci Michele
  02.10.2025
  BMP280 - Arduino Sensor Kit
  Stampa valori su Serial Monitor e OLED
*/

#include <Arduino_SensorKit.h>  // include unico per tutti i sensori

void setup() {
  Serial.begin(9600);
  Pressure.begin();  // inizializza il barometro

Oled.begin();
  // Inizializza il display OLED.
  // Fa partire la comunicazione I2C e manda al display la sequenza di avvio.
  // Senza questa riga lo schermo non mostra nulla.

Oled.setFlipMode(true);
  // Ruota il contenuto di 180° (utile se lo vedi capovolto).
  // Se nel tuo caso appare già dritto, puoi mettere false: Oled.setFlipMode(false);

Oled.setFont(u8x8_font_chroma48medium8_r);
  // Sceglie il font (carattere) 8x8.
  // Con un font 8x8 il display 128x64 si comporta come una griglia 16 colonne × 8 righe.
  // Significa che setCursor(colonna, riga) userà numeri tra 0..15 (colonne) e 0..7 (righe).

Oled.clear();
  // Pulisce lo schermo (cancella tutto quello che c’era prima).
}

void loop() {
  // La libreria restituisce:
  // - pressione in pascal
  // - temperatura in gradi Celsius
  // - altitudine in metri rispetto a 1013,25 hPa

float pressionePa = Pressure.readPressure();
  float temperaturaC = Pressure.readTemperature();
  float altitudineM = Pressure.readAltitude();

// conversione pa → hPa per leggibilità
  float pressioneHpa = pressionePa / 100.0;

// --- Intestazione ---

Oled.setCursor(0, 0);             // colonna 0, riga 0
  Oled.println("STAZIONE METEO");   // stampa la stringa e va a capo
  Oled.println("P - Pressione");    // stampa la stringa e va a capo
  Oled.println("T - Temperatura");  // stampa la stringa e va a capo
  Oled.println("A - Altitudine");   // stampa la stringa e va a capo

Oled.setCursor(0, 5);         // colonna 0, riga 2
  Oled.print("P: ");            // stampa la stringa P:
  Oled.print(pressioneHpa, 2);  // stampa valore della pressione con 2 numeri decimali

Oled.setCursor(0, 6);         // colonna 0, riga 3
  Oled.print("T: ");            // stampa la stringa T:
  Oled.print(temperaturaC, 2);  // stampa valore della temperatura con 2 numeri decimali
  Oled.refreshDisplay();

Oled.setCursor(0, 7);        // colonna 0, riga 4
  Oled.print("A: ");           // stampa la stringa A:
  Oled.print(altitudineM, 2);  // stampa valore dell'altitudine con 2 numeri decimali
  Oled.refreshDisplay();

// Aggiorna fisicamente il display (altrimenti potresti non vedere le modifiche).
  delay(60);

Serial.print(F("Pressione: "));
  Serial.print(pressioneHpa, 2);
  Serial.print(F(" hPa\tTemperatura: "));
  Serial.print(temperaturaC, 2);
  Serial.print(F(" °C\tAltitudine: "));
  Serial.print(altitudineM, 1);
  Serial.println(F(" m"));

delay(1000);
}

Buon Coding a tutti 🙂

Lezione 9 – Corso di Elettronica Creativa con Arduino Sensor Kit

Sensore di temperatura ed umidità (DHT22)

Ho parlato in precedenti post dei sensori di temperatura ed umidità, nello specifico l’uso del diffusissimo DHT11. L’Arduino Sensor Kit li può usare entrambi, ma nel kit è presente il DHT22.

Caratteristiche tecniche del DHT22

Il DHT22 è un sensore digitale che integra:

  • un elemento capacitivo per l’umidità relativa (RH),
  • un sensore termico per la temperatura,
  • un microcontrollore che invia i dati su un’unica linea (single-wire digitale, non analogica).
  • Range tipici e specifiche:
    • Temperatura: –40…+80 °C (risoluzione 0,1 °C, tip. ±0,5 °C),
    • Umidità relativa: 0…100 % RH (risoluzione 0,1 % RH, tip. ±2 % RH, max ±5 %),
  • Alimentazione: 3,3–5 V,
  • Frequenza di campionamento: max 0,5 Hz (una misura ogni ~2 s).

Cos’è l’umidità relativa

L’umidità relativa (RH) indica quanta vapor d’acqua è presente nell’aria rispetto alla quantità massima che quell’aria potrebbe contenere alla stessa temperatura.

  • 50 % RH = l’aria contiene metà del vapore “possibile” a quella temperatura.
  • 100 % RH = saturazione (rischio di condensa).
    Poiché la capacità dell’aria di trattenere vapore cresce con la temperatura, la RH dipende dalla temperatura: per questo i sensori come il DHT22 misurano entrambe le grandezze.

Mi è capitato spesso rispondere alla domanda: “ma Prof. cosa è meglio usare il DHT11 o il DHT22”

Se si dispone di entrambi certamente scegliere il DHT22 è da preferire, ma perché?

  • Precisione e range migliori: DHT22 copre –40…+80 °C (vs 0…+50 °C del DHT11) con ±0,5 °C tipici; RH 0…100 % con ±2–5 % (DHT11 è meno preciso e più limitato).
  • Risoluzione più fine: 0,1 °C / 0,1 % RH (utile per realizzare grafici e verificare trend).

Un vantaggio derivante dall’uso dell’Arduino Sensor Kit è che il DHT22 viene connesso all’Arduino mediante connessione I²C pertanto per il suo utilizzo è possibile collegarlo ad una delle uscite I²C presenti sulla Base Shield.

Veniamo ora agli esempi pratici, ne indico 6 di base, come sempre nei commenti la spiegazione. In classe ne realizzerò altri in cui mostreremo ad esempio la rilevazione della temperatura a media mobile a 10 campioni, attivazione di allarmi e ventole e molto altro.

Connessioni usate in questa lezione:

  • Sensore di Temperatura ed Umidità: connesso ad una qualsiasi dei pin I²C della Base Shield.
  • Display OLED: connesso ad una qualsiasi dei pin I²C della Base Shield.
  • Diodo LED: connesso al D6.

Esempio 01: sensore ambiente – lettura base (temperatura – umidità)

/*
  Prof. Maffucci Michele
  01.10.2025
  Sensore Ambiente – Lettura base (Temperatura + Umidità)

  NOTE:
    - DHT20 (I2C): decommenta la define Environment_I2C e abilita Wire.begin()
    - DHT11 (pin D3 via Base Shield): commenta la define, la libreria gestisce il pin di default
*/

#include <Arduino_SensorKit.h>

// >>> Decommenta se il sensore è DHT20 (I2C) <<<
#define Environment Environment_I2C

void setup() {
  Serial.begin(9600);
  // Necessario per DHT20 (I2C); non influisce negativamente su DHT11
  Wire.begin();

  Environment.begin();  // inizializza il sensore ambiente (DHT11 o DHT20)
}

void loop() {
  float temperaturaC = Environment.readTemperature(); // °C
  float umiditaRH    = Environment.readHumidity();    // %RH

  // Stampa della temperatura e dell'umidità sulla Serial Monitor ogni secondo
  Serial.print("Temperatura: ");
  Serial.print(temperaturaC, 1);
  Serial.print(" °C   Umidità: ");
  Serial.print(umiditaRH, 1);
  Serial.println(" %");

  delay(1000);
}

Esempio 02: Lettura Temperatura e Umidità con allarme su D6 (LED)

In questo esempio utilizziamo il diodo LED connesso al D6 come allarme, pertanto verrà acceso se la temperatura supera un valore di soglia impostato.

/*
  Prof. Maffucci Michele
  01.10.2025
  Lettura Temperatura e Umidità con allarme su D6 (LED)

  - Allarme: LED su D6 si accende se T > soglia.
  - Messaggi su Serial Monitor: ALERT all'attivazione, DISATTIVATO allo spegnimento.
  - DHT20 (I2C): lascia attiva la define Environment_I2C.
  - DHT11: commenta la define sotto; la libreria gestisce il pin del Base Shield.
*/

#include "Arduino_SensorKit.h"

#define Environment Environment_I2C

// Configurazione allarme
const int pinLedAllarme = 6;            // LED collegato al pin D6
const float sogliaTemperaturaC = 25.0;  // soglia in °C

bool allarmeAttivo = false;  // stato attuale dell'allarme

void setup() {
  Serial.begin(9600);

  // Necessario per DHT20 e per eventuali altre periferiche I2C (OLED, ecc.)
  Wire.begin();

  // Inizializza il sensore ambiente (DHT11 o DHT20 a seconda della define)
  Environment.begin();

  // LED di allarme
  pinMode(pinLedAllarme, OUTPUT);
  digitalWrite(pinLedAllarme, LOW);

  Serial.println("== Avvio lettura Temperatura & Umidita' con allarme su D6 ==");
  Serial.print("Soglia T = ");
  Serial.print(sogliaTemperaturaC, 1);
  Serial.println(" C");
}

void loop() {
  // Letture dal sensore
  float temperaturaC = Environment.readTemperature();  // °C
  float umiditaRH = Environment.readHumidity();        // %RH

// --- Gestione allarme con isteresi ---
// Usiamo DUE soglie diverse per evitare ON/OFF continui vicino al limite.
//  - Soglia di ACCENSIONE  (T_on):  temperaturaC > sogliaTemperaturaC
//  - Soglia di SPEGNIMENTO (T_off): temperaturaC < sogliaTemperaturaC // Finché T resta tra T_off e T_on, manteniamo lo stato attuale (nessun cambiamento). if (!allarmeAttivo && temperaturaC > sogliaTemperaturaC) {
  // Caso 1: l'allarme è attualmente OFF e la temperatura SUPERA la soglia di ACCENSIONE.
  // Accendiamo l'allarme (LED ON) e stampiamo un messaggio di ALERT.
  allarmeAttivo = true;
  digitalWrite(pinLedAllarme, HIGH);

  Serial.print("!!! ALERT: Temperatura sopra soglia: ");
  Serial.print(temperaturaC, 1);
  Serial.println(" C");

} else if (allarmeAttivo && temperaturaC < sogliaTemperaturaC) { // Caso 2: l'allarme è attualmente ON e la temperatura SCENDE sotto la soglia di SPEGNIMENTO // Spegniamo l'allarme (LED OFF) e informiamo che è rientrato. allarmeAttivo = false; digitalWrite(pinLedAllarme, LOW); Serial.print("Allarme DISATTIVATO: Temperatura rientrata: "); Serial.print(temperaturaC, 1); Serial.println(" C"); } // Nota sui casi limite: // - Se temperaturaC == sogliaTemperaturaC, NON si accende (serve ">" strettamente).
// - Se temperaturaC == (sogliaTemperaturaC, NON si spegne (serve "<" strettamente).

  // Stampa della temperatura e dell'umidità sulla Serial Monitor
  Serial.print("T=");
  Serial.print(temperaturaC, 1);
  Serial.print(" C   RH=");
  Serial.print(umiditaRH, 1);
  Serial.print(" %   ALLARME=");
  if (allarmeAttivo) {
    Serial.println("ON");
  } else {
    Serial.println("OFF");
  }

  delay(1000);
}

Esempio 03: Lettura Temperatura e Umidità con allarme su D6 (LED) con isteresi

Premessa

In elettronica, isteresi è la presenza di due soglie diverse per il passaggio tra due stati, così l’uscita dipende non solo dal valore istantaneo dell’ingresso, ma anche dalla sua storia. Serve a evitare commutazioni rapide e instabili quando il segnale oscilla vicino a una soglia.

Come nell’esempio precedente utilizziamo il diodo LED connesso al D6 come allarme, inoltre useremo l’isteresi per evitare che il LED “sfarfalli” (ON/OFF ripetuti) quando la temperatura oscilla vicino alla soglia a causa di rumore o piccole variazioni.

Nello sketch che segue l’isteresi funziona in questo modo:

  • Soglia di attivazione: sogliaTemperaturaC = 26.0 °C
    L’allarme si accende appena T > 26.0 °C.
  • Isteresi: isteresiC = 0.5 °C
    L’allarme si spegne solo quando T < 26.0 − 0.5 = 25.5 °C.

Quindi usi due soglie:

  • T_on = 26.0 °C (accendo quando la supero)
  • T_off = 25.5 °C (spengo solo quando scendo sotto)

Senza isteresi, se la temperatura è nell’intorno di intorno a 26 °C (es. 25.9 ↔ 26.1 per il rumore), l’allarme continuerebbe ad accendersi e spegnersi rapidamente. Con l’isteresi, una volta acceso, resta acceso finché non rientra ben al di sotto della soglia, evitando lampeggi/ronzii fastidiosi e messaggi “ALERT” ripetuti.

Quindi come regola generale per i sensori DHT che utilizziamo in laboratorio valori tra 0,3 e 1°C sono di solito sufficienti. Se è presente ancora sfarfallio, aumentare leggermente; se la risposta è troppo lenta a spegnersi, ridurre.

Come schema logico si tenga in conto:

  • Se allarme OFF e T > T_on → accendere
  • Se allarme ON e T < T_off → spegnere
  • Altrimenti mantenere lo stato corrente

È la stessa logica usata nei termostati: due soglie (accensione/spegnimento) invece di una sola, per ottenere un comportamento stabile.

/*
  Prof. Maffucci Michele
  01.10.2025
  Lettura Temperatura e Umidità con allarme su D6 (LED) con isteresi

  - Allarme: LED su D6 si accende se T > soglia.
  - Messaggi su Serial Monitor: ALERT all'attivazione, DISATTIVATO allo spegnimento.
  - DHT20 (I2C): lascia attiva la define Environment_I2C.
  - DHT11: commenta la define sotto; la libreria gestisce il pin del Base Shield.
*/

#include <Arduino_SensorKit.h>

#define Environment Environment_I2C

// Configurazione allarme
const int pinLedAllarme = 6;            // LED collegato al pin D6
const float sogliaTemperaturaC = 25.0;  // soglia in °C
const float isteresiC = 0.5;            // isteresi per evitare lampeggi (spegnimento sotto soglia - isteresi)

bool allarmeAttivo = false;  // stato attuale dell'allarme

void setup() {
  Serial.begin(9600);

  // Necessario per DHT20 e per eventuali altre periferiche I2C (OLED, ecc.)
  Wire.begin();

  // Inizializza il sensore ambiente (DHT11 o DHT20 a seconda della define)
  Environment.begin();

  // LED di allarme
  pinMode(pinLedAllarme, OUTPUT);
  digitalWrite(pinLedAllarme, LOW);

  Serial.println("== Avvio lettura Temperatura & Umidita' con allarme su D6 ==");
  Serial.print("Soglia T = ");
  Serial.print(sogliaTemperaturaC, 1);
  Serial.println(" C");
}

void loop() {
  // Letture dal sensore
  float temperaturaC = Environment.readTemperature();  // °C
  float umiditaRH = Environment.readHumidity();        // %RH

// --- Gestione allarme con isteresi ---
// Usiamo DUE soglie diverse per evitare ON/OFF continui vicino al limite.
//  - Soglia di ACCENSIONE  (T_on):  temperaturaC > sogliaTemperaturaC
//  - Soglia di SPEGNIMENTO (T_off): temperaturaC < (sogliaTemperaturaC - isteresiC) // Finché T resta tra T_off e T_on, manteniamo lo stato attuale (nessun cambiamento). if (!allarmeAttivo && temperaturaC > sogliaTemperaturaC) {
  // Caso 1: l'allarme è attualmente OFF e la temperatura SUPERA la soglia di ACCENSIONE.
  // Accendiamo l'allarme (LED ON) e stampiamo un messaggio di ALERT.
  allarmeAttivo = true;
  digitalWrite(pinLedAllarme, HIGH);

  Serial.print("!!! ALERT: Temperatura sopra soglia: ");
  Serial.print(temperaturaC, 1);
  Serial.println(" C");

} else if (allarmeAttivo && temperaturaC < (sogliaTemperaturaC - isteresiC)) { // Caso 2: l'allarme è attualmente ON e la temperatura SCENDE sotto la soglia di SPEGNIMENTO // (cioè sotto la soglia di accensione meno l'isteresi). // Spegniamo l'allarme (LED OFF) e informiamo che è rientrato. allarmeAttivo = false; digitalWrite(pinLedAllarme, LOW); Serial.print("Allarme DISATTIVATO: Temperatura rientrata: "); Serial.print(temperaturaC, 1); Serial.println(" C"); } // Nota sui casi limite: // - Se temperaturaC == sogliaTemperaturaC, NON si accende (serve ">" strettamente).
// - Se temperaturaC == (sogliaTemperaturaC - isteresiC), NON si spegne (serve "<" strettamente).
// Questo evita cambi di stato ripetuti quando il valore oscilla esattamente sulla soglia.

  // Stampa della temperatura e dell'umidità sulla Serial Monitor
  Serial.print("T=");
  Serial.print(temperaturaC, 1);
  Serial.print(" C   RH=");
  Serial.print(umiditaRH, 1);
  Serial.print(" %   ALLARME=");
  if (allarmeAttivo) {
    Serial.println("ON");
  } else {
    Serial.println("OFF");
  }

  delay(1000);
}

Esempio 04: Lettura Temperatura e Umidità con stampa su OLED e Serial Monitor

Abbiamo visto nella precedente lezione l’uso del display OLED dell’Arduino Sensor Kit, utilizziamolo ora per mostrare temperatura ed umidità che stamperemo anche sulla Serial Monitor.

/*
  Prof. Maffucci Michele
  01.10.2025
  Lettura Temperatura e Umidità con stampa su OLED e Serial Monitor

  - DHT20 (I2C): lascia attiva la define Environment_I2C.
  - DHT11: commenta la define sotto; la libreria gestisce il pin del Base Shield.
*/

#include <Arduino_SensorKit.h>

#define Environment Environment_I2C

void setup() {
  Serial.begin(9600);
  Wire.begin();         // necessario con DHT20/OLED su I2C
  Environment.begin();  // DHT11 o DHT20 (in base alla define)
  Oled.begin();         // inizializza OLED

  // Orientamento e font leggibile
  Oled.setFlipMode(true);
  Oled.setFont(u8x8_font_chroma48medium8_r);

  // Pulisci UNA volta all’avvio
  Oled.clearDisplay();

  // Etichette fisse (non cambiano > non serve riscriverle)
  Oled.setCursor(0, 2);
  Oled.print("T=");
  Oled.setCursor(0, 4);
  Oled.print("RH=");
}

void loop() {

  float tC = Environment.readTemperature();  // °C
  float rH = Environment.readHumidity();     // %RH

  // --Stampa su OLED

  // Sovrascrivo soltanto il campo variabile, SENZA clearDisplay
  Oled.setCursor(2, 2);  // subito dopo "T="
  Oled.print(tC);

  Oled.setCursor(3, 4);  // subito dopo "RH="
  Oled.print(rH);

  // --Stampa su seriale
  Serial.print("T=");
  Serial.print(tC);
  Serial.print(" C   RH=");
  Serial.print(rH);
  Serial.println(" %");

  delay(500);  // aggiorna 2 volte al secondo (meno sfarfallio)
}

Esempio 05: Lettura Temperatura e Umidità con stampa su OLED e Serial Monitor ed accensione LED con isteresi

Aggiungiamo alla versione precedente l’allarme dato con il LED.

/*
  Prof. Maffucci Michele
  01.10.2025
  Lettura Temperatura e Umidità con stampa su OLED e Serial Monitor
  ed accensione LED con isteresi

  - DHT20 (I2C): lascia attiva la define Environment_I2C.
  - DHT11: commenta la define sotto; la libreria gestisce il pin del Base Shield.
*/

#include <Arduino_SensorKit.h>

#define Environment Environment_I2C

// Configurazione allarme
const int pinLedAllarme = 6;            // LED collegato al pin D6
const float sogliaTemperaturaC = 25.0;  // soglia in °C
const float isteresiC = 0.5;            // isteresi per evitare lampeggi (spegnimento sotto soglia - isteresi)

bool allarmeAttivo = false;  // stato attuale dell'allarme

void setup() {
  Serial.begin(9600);
  Wire.begin();         // necessario con DHT20/OLED su I2C
  Environment.begin();  // DHT11 o DHT20 (in base alla define)
  Oled.begin();         // inizializza OLED

  // Orientamento e font leggibile
  Oled.setFlipMode(true);
  Oled.setFont(u8x8_font_chroma48medium8_r);

  // Pulisci UNA volta all’avvio
  Oled.clearDisplay();

  // Etichette fisse (non cambiano → non serve riscriverle)
  Oled.setCursor(0, 2);
  Oled.print("T=");
  Oled.setCursor(0, 4);
  Oled.print("RH=");

  pinMode(pinLedAllarme, OUTPUT);
  digitalWrite(pinLedAllarme, LOW);

  Serial.println("== Avvio lettura Temperatura & Umidita' con allarme su D6 ==");
  Serial.print("Soglia T = ");
  Serial.print(sogliaTemperaturaC, 1);
  Serial.println(" C");
}

void loop() {

  float tC = Environment.readTemperature();  // °C
  float rH = Environment.readHumidity();     // %RH

// --- Gestione allarme con isteresi ---
// Usiamo DUE soglie diverse per evitare ON/OFF continui vicino al limite.
//  - Soglia di ACCENSIONE  (T_on):  temperaturaC > sogliaTemperaturaC
//  - Soglia di SPEGNIMENTO (T_off): temperaturaC < (sogliaTemperaturaC - isteresiC) // Finché T resta tra T_off e T_on, manteniamo lo stato attuale (nessun cambiamento). if (!allarmeAttivo && tC > sogliaTemperaturaC) {
  // Caso 1: l'allarme è attualmente OFF e la temperatura SUPERA la soglia di ACCENSIONE.
  // Accendiamo l'allarme (LED ON) e stampiamo un messaggio di ALERT.
  allarmeAttivo = true;
  digitalWrite(pinLedAllarme, HIGH);

  Serial.print("!!! ALERT: Temperatura sopra soglia: ");
  Serial.print(tC, 1);
  Serial.println(" C");

} else if (allarmeAttivo && tC < (sogliaTemperaturaC - isteresiC)) {
  // Caso 2: l'allarme è attualmente ON e la temperatura SCENDE sotto la soglia di SPEGNIMENTO
  // (cioè sotto la soglia di accensione meno l'isteresi).
  // Spegniamo l'allarme (LED OFF) e informiamo che è rientrato.
  allarmeAttivo = false;
  digitalWrite(pinLedAllarme, LOW);

  Serial.print("Allarme DISATTIVATO: Temperatura rientrata: ");
  Serial.print(tC, 1);
  Serial.println(" C");
}

  // -- Stampa su OLED --

  // Sovrascrivo soltanto il campo variabile, SENZA clearDisplay
  Oled.setCursor(2, 2);  // subito dopo "T="
  Oled.print(tC);

  Oled.setCursor(3, 4);  // subito dopo "RH="
  Oled.print(rH);

  // -- Stampa su seriale --
  Serial.print("T=");
  Serial.print(tC);
  Serial.print(" C   RH=");
  Serial.print(rH);
  Serial.println(" %");

  delay(500);  // aggiorna 2 volte al secondo (meno sfarfallio)
}

Esempio 06: lettura Temperatura & Umidità con stampa su OLED e Serial Monitor ed accensione LED – su OLED viene mostrato allarme

Aggiungiamo allo sketch precedente la visualizzazione del messaggio di alert sul display. Per semplicità di lettura ho tolto i commenti nella sezione: “Gestione allarme con isteresi”, lasciando solo quelli che si riferiscono alla stampa dell’alert sul display.

/*
  Prof. Maffucci Michele
  01.10.2025
  Lettura Temperatura & Umidità con stampa su OLED e Serial Monitor
  ed accensione LED - su OLED viene mostrato allarme

  - DHT20 (I2C): lascia attiva la define Environment_I2C.
  - DHT11: commenta la define sotto; la libreria gestisce il pin del Base Shield.
*/

#include <Arduino_SensorKit.h>

#define Environment Environment_I2C

// Configurazione allarme
const int pinLedAllarme = 6;            // LED collegato al pin D6
const float sogliaTemperaturaC = 25.0;  // soglia in °C
const float isteresiC = 0.5;            // isteresi per evitare lampeggi (spegnimento sotto soglia - isteresi)

bool allarmeAttivo = false;  // stato attuale dell'allarme

void setup() {
  Serial.begin(9600);
  Wire.begin();         // necessario con DHT20/OLED su I2C
  Environment.begin();  // DHT11 o DHT20 (in base alla define)
  Oled.begin();         // inizializza OLED

  // Orientamento e font leggibile
  Oled.setFlipMode(true);
  Oled.setFont(u8x8_font_chroma48medium8_r);

  // Pulisci UNA volta all’avvio
  Oled.clearDisplay();

  // Etichette fisse (non cambiano → non serve riscriverle)
  Oled.setCursor(0, 2);
  Oled.print("T=");
  Oled.setCursor(0, 4);
  Oled.print("RH=");

  pinMode(pinLedAllarme, OUTPUT);
  digitalWrite(pinLedAllarme, LOW);

  Serial.println("== Avvio lettura Temperatura & Umidita' con allarme su D6 ==");
  Serial.print("Soglia T = ");
  Serial.print(sogliaTemperaturaC, 1);
  Serial.println(" C");
}

void loop() {

  float tC = Environment.readTemperature();  // °C
  float rH = Environment.readHumidity();     // %RH

  // --- Gestione allarme con isteresi ---
  if (!allarmeAttivo && tC > sogliaTemperaturaC) {
    allarmeAttivo = true;
    digitalWrite(pinLedAllarme, HIGH);

    // cursore nell'angolo in alto a destra
    Oled.setCursor(0, 0);
    // stampa del messaggio di alert
    Oled.print("ALERT: t>tMax");
    Serial.print("!!! ALERT: Temperatura sopra soglia: ");
    Serial.print(tC, 1);
    Serial.println(" C");
  } else if (allarmeAttivo && tC < (sogliaTemperaturaC - isteresiC)) {
    allarmeAttivo = false;
    digitalWrite(pinLedAllarme, LOW);

    // cursore nell'angolo in alto a destra
    Oled.setCursor(0, 0);
    // cancellazione con spazi del messaggio di alert
    Oled.print("             ");
    Serial.print("Allarme DISATTIVATO: Temperatura rientrata: ");
    Serial.print(tC, 1);
    Serial.println(" C");
  }

  // -- Stampa su OLED --

  // Sovrascrivo soltanto il campo variabile, SENZA clearDisplay
  Oled.setCursor(2, 2);  // subito dopo "T="
  Oled.print(tC);

  Oled.setCursor(3, 4);  // subito dopo "RH="
  Oled.print(rH);

  // -- Stampa su seriale --
  Serial.print("T=");
  Serial.print(tC);
  Serial.print(" C   RH=");
  Serial.print(rH);
  Serial.println(" %");

  delay(500);  // aggiorna 2 volte al secondo (meno sfarfallio)
}

Buon Coding a tutti 🙂

BBC micro:bit – usare un sensore DHT 22

Durante il mio ultimo corso sulla realizzazione di mini serre indoor, ho fornito ai corsisti le competenze di base per usare una serie di sensori controllati dal micro:bit. Alcuni colleghi possedevano kit generici di componentistica elettronica tra cui sensori non disposti PCB board, pertanto per alcuni non erano presenti quei componenti che permettevano l’interfacciamento al microcontrollore. È il caso ad esempio del DHT22 sensore di temperatura è umidità relativa che ha una modalità di utilizzo molto simile al più noto ed economico DHT11.

Le caratteristiche tecniche dei due sensori sono indicate di seguito:

DHT11 DHT22
Intervallo di temperatura 0 to 50 ºC +/-2 ºC -40 to 80 ºC +/-0.5ºC
Intervallo di umidità 20 to 90% +/-5% 0 to 100% +/-2%
Risoluzione Umidità: 1%
Temperatura: 1ºC
Umidità: 0.1%
Temperatura: 0.1ºC
Tensione di funzionamento 3 – 5.5 V DC 3 – 6 V DC
Corrente di funzionamento 0.5 – 2.5 mA 1 – 1.5 mA
Periodo di campionamento 1 secondo 2 secondo

Il sensore DHT22 può essere acquistato nelle due modalità: su PCB board oppure in modalità solo componente come indicato nell’immagine che segue:

Il DHT22 per poter funzionare necessità di un resistore di pull-up che nella versione PCB è già presente. Nel caso si dispone del solo sensore è necessario aggiungere un resistore tra i 5k ohm e i 10k ohm connesso come nell’immagine che segue:

La modalità di utilizzo del sensore con il micro:bit è estremamente semplice e richiede solamente l’installazione di un’estensione che potrete cercare facendo clic su “Extensions” ed inserendo nel campo di ricerca dht22. L’estensione sarà DHT11_DHT22 in grado di gestire sia il DHT11 che il DHT22.

Seguire il link per consultare la pagina di riferimento dell’estensione utilizzata.

Come potrete leggere l’istruzione di configurazione riportata nell’immagine che segue è costituita da una serie di campi:

  • Query: permette la selezione del tipo di sensore, DHT11 o DHT22
  • Data pin: è il pin del micro:bit a cui dovremo connettere il pin data del DHT22
  • Pin pull-up: indica se presente il resistore di pull-up nel nostro caso dovrà essere impostato a true. Nel caso fosse impostato a false verrà utilizzato il resistore di pull-up interno del micro:bit che è di circa 13 K ohm.
  • Serial output: stabilisce se si vuole un output sulla serial monitor, false non mostra i dati, true li mostra
  • Wait 2 sec after query: se impostato su true consente di fissare l’intervallo tra due interrogazioni al sensore a 2 secondi, lasciare questa impostazione. È importante non ridurre questo intervallo altrimenti il sensore non riuscirà a fornirci la misura.

Durante la comunicazione tra sensore e micro:bit viene effettuato un controllo di eventuali errori di comunicazione, se ciò accade leggerete in output il codice di errore -999 se l’errore persiste per più secondo molto probabilmente il problema è di carattere elettivo, nella maggior parte dei casi una connessione mancante o errata connessione elettrica tra i dispositivi.

Aggiungo alcuni programmi che mostrano il funzionamento del DHT22.

Stampa su display della temperatura rilevata:

Link al programma.

Stampa su display della temperatura e dell’umidità rilevata:

Link al programma.

Stampa su Serial Monitor della temperatura rilevata:

Link al programma.

Stampa sulla serial monitor temperatura ed umidità rilevata:

Link al programma.

Buon Making a tutti 🙂

Installare su Ubuntu il software dell’eZ430 Chronos

Procediamo nell’installazione di tutte le componenti necessarie per poter utilizzare il software di gestione dell’eZ430-Chronos su Ubuntu.

Il software eZ430-Chronos per Linux necessita delle TCL/Tk e se la vostra distribuzione Linux non la include installatela utilizzando i comandi apt-get:

sudo apt-get install tcl8.5
sudo apt-get install tk8.5

[wpspoiler name=”Fasi di installazione tcl8.5 e tk8.5″]

[/wpspoiler]

Per generare gli eventi della tastiera e i click del mouse tramite i pulsanti dell’orologio è richiesta l’installazione di xdotool. Installate con il comando apt-get:

sudo apt-get install xdotool

[wpspoiler name=”Fasi di installazione di xdotool”]

[/wpspoiler]

Ora sul vostro computer avete creato l’infrastruttura necessaria per per poter procedere con l’installazione eZ430-Chronos Setup.

Inseriamo il CD-ROM e andate nella cartella:

software -> linux -> ez430-chronos installer

doppio click su chronos-setup:

[wpspoiler name=”Dove si trova chronos-setup?”]

[/wpspoiler]

[wpspoiler name=”Fasi di installazione di eZ430-Chronos”]

[/wpspoiler]

Conclusa l’installazione troverete nella vostra home directory la cartella: Texas Instruments dove sono allocati i file necessari per la gestione del vostro microcontrollore

[wpspoiler name=”Dove si trova il software installato?”]

[/wpspoiler]

Continuiamo con l’installazione…

inserite su una presa USB del PC l’access point RF dell’orologio:

Verificate nella directory /dev la presenza di /dev/ttyACMx, dove x specifica il numero della porta.

Se l’access point RF non viene montato in /dev/ttyACMx, impostate la variabile COM nel file eZ430-Chronos_CC_1_1.tcl e eZ430-Chronos_Datalogger_1_1.tcl in /dev/ttyACM0

Rendere eseguibili i due script: eZ430-Chronos_CC_1_1.tcl e eZ430-Chronos_Datalogger_1_1.tcl mediante il comando da terminale:

chmod u+x ./eZ430-Chronos_CC_1_1.tcl
chmod u+x ./eZ430-Chronos_Datalogger_1_1.tcl

a questo punto potete avviare i due script da terminale:

./eZ430-Chronos_CC_1_1.tcl

e

./eZ430-Chronos_Datalogger_1_1.tcl

oppure facendo doppio click sul file e poi premendo su esegui.

Nel Control Center attivate la comunicazione tra computer e orologio facendo click su “Start Access Point” e sull’orologio selezionate con il pulsante # la funzionalità ACC o PPT e avviate la trasmissione premendo sul pulsante “freccia in basso”.

Il filmato che segue mostra il funzionamento dell’accellerometro a 3 assi, i grafici X, Y, Z in funzione del tempo mostrano i movimenti dell’orologio lungo i tre assi:

Con l’eZ430-Chronos potete pilotare il puntatore del mouse, ad esempio per il controllo di una presentazione PowerPoint su computer, dal Control Center attivate l’access point, selezionate la funzionalità ACC o PPT sull’orologio (pulsante #) e attivate la comunicazione con il pulsante “freccia in basso”, poi fate click sul pulsante “Mouse On (M)” (oppure premete il tasto M della tastiera) a questo punto potete pilotare il puntatore.

Di seguito il filmato che mostra il controllo del mouse:

eZ430-Chronos ambiente di sviluppo per orologi della Texas Instruments

La settimana scorsa ho acquistato un kit di sviluppo ez430 chronos basato sul microcontrollore 16 bit della Texas Instruments CC430F6137, dispositivo a bassissimo consumo destinato alla realizzazione di dispositivi portatili.

Il kit di sviluppo è un orologio sportivo water resistant fino a 30 metri con software e hardware open e quindi potete variarne ogni cosa, sul CD-ROM in dotazione trovate anche i PCB!
ez430 chronos è fornito con una chiavetta usb che permette di collegare direttamente al computer il microcontrollore ed una chiavetta RF.
Il display LCD a 96 segmenti è retroilluminato, è dotato di un accelerometro a 3 assi, termometro, altimetro e barometro, sensore voltaggio batteria, rilevatore di battito cardiaco che può ricevere da diversi sensori in commercio, pedometro, velocità bici e possibilità di controllare il PC mediante l’orologio come se fosse un mouse.

Potete programmare e aggiornare il software direttamente anche via radio.

Il costo del kit di sviluppo è di $49.00 (a cui andranno successivamente aggiunti 15 Euro di Dogana) dal sito della Texas Instruments ed è composto da:

  • Orologio wireless eZ430-Chronos con software già installato
  • chiavetta USB per programmazione e debugging
  • CC1111 USB RF access point
  • Cacciavite Phillips
  • viti di ricambio
  • CD contenente la documentazione e il software di sviluppo

Esistono 3 versioni che differiscono per la frequenza di funzionamento:

  • eZ430-Chronos-433 – 433 MHz
  • eZ430-Chronos-868 – 868 MHz
  • eZ430-Chronos-915 – 915 MHz

Io ho acquistato la versione a 915 MHz è mi è stata consegnata in 48 ore! Inoltre l’assistenza clienti di TI è ottima.

L’orologio viene fornito già programmato e lo potete usare subito come orologio sportivo, sul CD-ROM disponete del software necessario per usarlo anche come datalogger.

Si programma in C e sul CD-ROM avete alcuni esempi, in questi giorni di vacanza sto facendo alcuni esperimenti e se riuscirò realizzerò alcuni tutorial.
Gli ambienti di sviluppo funzionano su Windows e Linux, io per ora sto programmando su Ubuntu.

In ogni caso se volete approfondire l’argomento questi i due link di partenza:

Di seguito un video interessante in cui l’orologio viene usato come chiave elettronica per l’apertura di una porta di un’abitazione.

Spero di poterne trarre spunti didattici interessanti da sperimentare con i miei allievi.