Archivi tag: robot

EduRobot BitSquare

BitSquare quadrato nel design, semplicità nella realizzazione di attività introduttive di Coding e robotica a scuola.

Per la lezione che ho condotto oggi per i colleghi che stanno seguendo il mio corso di Didattica della Robotica, organizzato dal CTS di Cosenza, ho progettato un semplice supporto che ospita il Servo:Lite di Kitronik e BBC micro:bit e due servomotori. Nessuna vite di blocco per i servomotori ma elastici che evitano la fuoriuscita dei motori dalle loro sedi, le uniche viti da usare sono quelle che fissano le ruote all’albero del motore.

La progettazione ha richiesto circa 1 ora di lavoro e come sempre sfrutterò questo progetto per svolgere tra qualche settimana un’attività di sperimentazione con alcune classi prime e seconde superiori dell’ITIS passando da una programmazione a blocchi, Blocks, per giungere poi all’uso di MicroPython.
Espansioni già richieste da alcuni colleghi della primaria: aggiungere l’alloggiamento per una penna.

Il costo di stampa è meno di 1€ mentre il tempo di stampa e di quasi due ore, ma questi valori possono scendere in funzione della tipologia di filamento e stampante.

Per gli esercizi di utilizzo lascio a voi, durante i corsi che svolgo, su questo prototipo e strutture similari, propongo numerose schede di lavoro.

Sperando che il progetto possa servire anche ad altri condivido i file per la stampa 3D che trovate su Thingiverse.

Buon Coding a tutti 🙂

Costruiamo EduRobot Black Panther – kit robotico didattico multipiattaforma

Un robot che costa meno di un libro.

Al fine di supportare i colleghi che seguono i miei corsi, ho realizzato una struttura robotica che deriva da un precedente progetto che ho sviluppato per i miei studenti, si tratta della versione n. 6 del kit robotico che ho chiamato EduRobot, nominata “Black Panther”.

Ho pensato ad una struttura estremamente economica in cui, ad esclusione delle viti di serraggio delle varie parti, il resto dei materiali è costituito da schede di controllo, motori e sensori.

La struttura minima richiede almeno 3 livelli, ma è possibile innalzarla per aggiungere tutta l’elettronica necessaria per espandere le funzionalità del robot.

Tutti gli elementi sono stati stampati in 3D ed il materiale scelto è il PLA.

I costi complessivi di stampa, viti di serraggio e dadi, non supera i 10€.

Per prelevare i sorgenti per la stampa 3D seguire il link sulla mia pagina su Thingiverse.

Le funzioni che possono essere programmate sono le medesime dei più blasonati kit robotici in commercio, pertanto se la vostra scuola ha acquistato una stampante 3D, sarà sufficiente una manciata di elettronica a basso costo per realizzerete robot assolutamente inclusivo, sia per il portafoglio delle famiglie degli allievi che di quelle del docente.

Il cilindro di occupazione del robot ha un diametro di 135 mm e i motori sono esattamente centrati rispetto alla base del cilindro.

Per evitare spese aggiuntive al posto delle caster ball ho preferito utilizzare un elemento dotato di superficie curva, ovviamente tale elemento se lo desidera può essere sostituito da una caster ball metallica.

Sul terzo livello del robot sono stati già inseriti fori per fissare i microcontrollori: Arduino UNO R3 e BBC micro:bit e computer Raspberry Pi 3 o 4.

Sempre sul terzo livello nel caso si desidera utilizzare un BBC micro:bit, è possibile fissare una scheda motorbit.

Nel caso il controllo avvenisse con Arduino UNO R3 la scheda di controllo motori è costituita da un L298N che andrà impilato sulla scheda Arduino, secondo quanto indicato nel tutorial che segue.

Nei kit di base sul 3’ livello viene utilizzata una minibreadboard per facilitare la connessione tra i vari dispositivi elettronici.

Per entrambe le versioni il robot è dotato di un sensore ad ultrasuoni HC-SR04 fissato alla struttura. Per la valutazione della distanza dell’ostacolo si è preferito evitare l’utilizzo di un servomotore che facesse ruotare il sensore ad ultrasuoni al fine di ridurre i costi. La rotazione che valuta la distanza dell’ostacolo più vicino verrà svolta ruotando l’intero robot rispetto al suo baricentro.

Il robot è dotato di due sensori ad infrarossi da impiegare per la realizzazione di un robot segui linea.

Nella versione con scheda Arduino UNO R3 sarà possibile effettuare un controllo mediante scheda Bluetooth HC-05, il cui supporto potrà essere fissato sul terzo piano del robot.

Di seguito la lista dei materiali e le relative fotografie che ne dettagliano la costruzione delle parti meccaniche e delle schede, non viene dettagliata la connessione elettrica tra le parti e la programmazione, per ora riservato ai colleghi che frequentano o frequenteranno i miei corsi, ma molto probabilmente nel prossimo futuro, con un po’ di calma lavorativa estenderò a tutti la parte di spiegazione elettronica e programmazione.

Sto sviluppando corsi in cui mostro come, usando la medesima struttura robotica, sarà possibile controllare il robot mediante un Raspberry Pi oppure un Raspberry Pi Pico.

Per i colleghi insegnanti svolgerò nel prossimo futuro ulteriori corsi gratuiti a cui potrete iscrivervi attraverso la piattaforma ScuolaFutura, corsi che saranno svolti i diverse modalità: in presenza, MOOC e blended.

Per essere aggiornati sui progetti e sui corsi che svolgerò nel prossimo futuro vi invito ad iscrivervi al mio sito inserendo la vostra e-mail nel campo: “Iscriviti al blog tramite email” nella colonna destra in alto, in questo modo potrete essere aggiornati tempestivamente.

La sequenza di montaggio indicata di seguito è quella che secondo il mio parere vi consente di montare l’intera struttura in non più di 60 minuti, è essenziale però munirsi di cacciaviti a stella e pinza a becco lungo, ottimo sarebbe utilizzare un piccolo avvitatore.

In generale non è richiesta nessuna saldatura a stagno in quanto i motori (gialli) a 6V utilizzati possono essere acquistati anche con cavi già saldati, attenzione però che la connessione tra motore e cavi elettrici potrebbe essere delicata, pertanto si consiglia di serrare i cavi mediante una fascetta stringicavi, come dettagliato di seguito.

Se è necessario prolungare la lunghezza dei cavi è possibile adottare diversi metodi, quello che preferisco è l’utilizzo di connettori wago che possono essere acquistati con diverso numero di fori, nel caso di questo kit robot sono sufficienti wago da 3 fori.

Ovviamente, nel caso di rotture o disconnessione dei cavi dai poli del robot bisognerà per forza ricorrere alla saldatura a stagno. 

La fotografia che segue mostra tutti gli elementi da stampare in 3D per le due versioni di robot.

Di seguito elenco materiali e sequenza di montaggio.

Continua a leggere

7 stampe 3d in 7 giorni – Ozobot EVO kit

Come supporto del mio prossimo corso in partenza il 27.06.22 ho realizzato una serie di elementi che si incastrano come una cintura sul piccolo robot. Gli elementi sono:

  • forchetta,
  • spazzaneve,
  • pala escavatore
  • “trascina dischi” un elemento in grado di spostare i dischi impilabili da utilizzare come ostacoli all’interno degli scenari
  • un reggi penna per trasformare Evo in un robot disegnatore. Questo oggetto è formato da tre parti: la base, il supporto per il pennarello ed un pomello da utilizzare per stringere manualmente la vite che blocca il pennarello. Per assemblare questo elemento sono necessari due dadi M3 e due viti M3 da 16 mm. E’ possibile inserire pennarelli con diametro massimo di 11 mm.
  • driver per spostare dischi
  • dischi impilabili

Tutti gli elementi hanno un orientamento preciso e l’inserimento deve avvenire dal basso tutto ciò è dettagliato nelle immagini che seguono.

Per prelevare i file per la stampa 3D seguire il link.

Buon Making a tutti 🙂

7 stampe 3d in 7 giorni – supporto pennarello per BeeBot

Per questo mio personale Contest per la realizzazione degli strumenti del mio prossimo corso, non poteva mancare anche un supporto per matite, penne e pennarelli per il BeeBot.
Come potete notare dalle immagini che seguono il pennarello viene vincolato mediante una vite su cui è inserito un pomello che facilita l’avvitamento.

La struttura è bloccata sulla base da due perni che si inseriscono nei fori già presenti nel robot e tutta la struttura viene poi bloccata mediante una vite inserita nel foro presente nella parte posteriore del robot. Per permettere il blocco è necessario utilizzare la rondella a mezzaluna.

Fate attenzione a regolare esattamente la punta del pennarello altrimenti il robot non si muoverà.

Materiali

  • 3 elementi stampati in 3D
  • 2 dadi M3
  • 1 vite M3 da 10 mm
  • 1 vite M3 da 20 mm

Per prelevare i sorgenti per la stampa 3D seguire il link.

Di seguito la sequenza di montaggio della struttura:

Passo 1

Allineare la struttura inserendo i perni nei fori del robot

Passo 2

Inserire la “mezzaluna” all’interno della sede: “coda del BeeBot”

Passo 3

Inserire la vite dalla parte sottostante del robot

Passo 4

Nella parte superiore inserire il dado ed avvitare

Passo 5

Inserire la vite da 20 mm nel pomello

Passo 6

Inserire il dado nella sede

Passo 7

Avvitare

Buon Making a tutti 🙂

Creare un kit robotico educativo a basso costo – 2′ edizione


Dopo il successo della prima edizione sono felice di annunciarvi che questa settimana proporrò la seconda edizione del corso: Creare un kit robotico educativo a basso costo. Mostrerò nuovi robot realizzati in cartone controllati da BBC micro:bit. Darò inoltre indicazione su effettuare il controllo con Arduino e Raspberry Pi.

Come in ogni corso che svolgo verranno forniti sorgenti grafici per la realizzazione dei robot e schede didattiche di programmazione che potranno essere utilizzate in classe con gli studenti.

Presentazione del corso:

Mediante una metodologia laboratoriale, si forniranno competenze digitali finalizzate alla realizzazione di robot didattici a bassissimo costo permettendo al docente si strutturare un percorso di base per avvicinare gli studenti ai principi della programmazione e della robotica.
Il corso si sviluppa in 3 moduli e permetterà di costruire un robot partendo da zero.

  1. Il primo modulo introduce all’uso di BBC micro:bit ed alla programmazione con Blocks Editor, un tool grafico che semplifica l’utilizzo della scheda
    elettronica che controllerà il robot;
  2. Il secondo modulo introduce all’utilizzo modellazione 3D con TinkerCAD che permetterà di stampare in 3D le proprie creazioni, oppure generare i
    progetti necessari per realizzare i robot con compensato o cartone;
  3. Il terzo modulo mette insieme le due competenze consentendo la costruzione ed il controllo del proprio robot didattico.

Saranno svolti 3 incontri in webinar di 2 ore ciascuno, per un totale di 6 ore

  • Venerdì 19 novembre 2021 – Dalle 17.00 alle 19.00
  • Lunedì 29 novembre 2021 – Dalle 17.00 alle 19.00
  • Martedì 30 novembre 2021 – Dalle 17.00 alle 19.00

Per maggiori informazioni sui contenuti del corso e modalità di iscrizione seguire il link allegato.