Archivi tag: ordine

Quick References per lo studio – Nomi file & versioni

Dare un nome chiaro ai file e gestire le versioni non è pignoleria: è ciò che ti fa trovare subito ciò che cercate, capire al volo quale documento è l’ultimo e collaborare senza caos. In classe e nei progetti di gruppo capita spesso di avere decine di file chiamati “Relazione definitiva (nuova)”, “Relazione_ultimissima (1)”, “prova2_bis.pdf”. Risultato: si perde tempo, si consegna il file sbagliato, si confondono revisioni e correzioni del docente.

Un buon naming (come chiami il file) e un semplice versioning (come tenete traccia delle versioni) risolvono questi problemi perché:

  • i file sono ordinabili in modo naturale (per data, per progetto, per autore);
  • il nome racconta cosa contiene e a che punto è (v1.0, v1.1, v2.0…);
  • lavorare in gruppo diventa più semplice (ognuno segue la stessa convenzione);
  • la consegna è pulita: il docente vede subito cosa aprire, senza dubbi.

Non serve un software complicato: basta una regola condivisa e costante. Con una convenzione semplice, in 1 secondo capisci versione, tema e autore; in 2 clic trovi tutto ciò che ti serve.

Esempio sintetico:

  • Nomi coerenti = cercare e condividere senza perdersi.
  • Regola: AAAA-MM-GG_progetto-parole-chiave_vX.Y_autore.ext.
    Ordinabile per data, leggibile da tutti, facile da versionare. Evita spazi e caratteri strani; usa trattini.
  • Cartelle consigliate: /classe/materia/progetto/gruppo/.

Scarica PDF A4 della guida operativaApri il sorgente Markdown su GitHub

Se non sai cos’è il Markdown segui il link

---
title: "QR – Nomi file & versioni come i pro"
version: "1.1"
autore: "<Classe/Studente>"
licenza: "CC BY 4.0"
ultimo_aggiornamento: "2025-10-05"
---

# Perché una convenzione aiuta
- Trovi i file subito (ordinamento per data e nome).
- Capisci a colpo d’occhio contenuto e versione.
- Meno conflitti/doppioni nei lavori di gruppo.
- Consegne pulite e professionali.

## Convenzione base (da usare)
`AAAA-MM-GG_progetto-parole-chiave_vX.Y_autore.ext`

**Spiegazione**
- `AAAA-MM-GG` = data (es. 2025-10-05)
- `progetto-parole-chiave` = tema + 1–3 parole utili (senza spazi; usa trattini)
- `vX.Y` = versione (X=major, Y=minor: v1.0, v1.1, v2.0…)
- `autore` = cognome o nome-cognome / nome del team
- `ext` = estensione (.pdf, .docx, .ino, .csv, .pptx…)

## Struttura cartelle consigliata
/classe/materia/progetto/gruppo/{dati,codice,relazione,media}

## Regole d’oro
- Usa trattini `-` o underscore `_` (no spazi, accenti, emoji).
- Minuscole coerenti; nomi descrittivi.
- Incrementa solo la parte necessaria della versione.
- Esporta un PDF finale per le consegne.

## Versioning semplice
- Inizio: v1.0 (prima consegna “completa”)
- Piccole correzioni: v1.1, v1.2 …
- Cambio sostanziale: v2.0
- Se arrivano commenti del docente: crea una nuova versione (non sovrascrivere)

## Modelli pronti (copia e incolla)
- Relazione (PDF): `AAAA-MM-GG_relazione-_vX.Y_.pdf`
- Codice Arduino: `AAAA-MM-GG__vX.Y_.ino`
- Dataset CSV: `AAAA-MM-GG_dati--_vX.Y_.csv`
- Presentazione: `AAAA-MM-GG_presentazione-_vX.Y_.pptx`
- Immagine/Figura: `AAAA-MM-GG_fig--_vX.Y_.png`

## Esempi rapidi (solo nomi, da imitare)
- 2025-10-05_relazione-arduino_stazione-ambientale_v1.0_rossi.pdf
- 2025-10-05_codice-sensore-luce_v1.3_rossi.ino
- 2025-10-05_dati-luce-umidita-aula3_v0.3_teamB.csv

## Checklist finale
- [ ] Stesso formato per tutti i file del progetto
- [ ] Versione aggiornata (vX.Y) coerente
- [ ] Niente duplicati “finale_definitivo(3).docx”
- [ ] PDF esportato per la consegna

Esempio 01 – Consegna di gruppo (Arduino)

  • Cartella: /3B/info/stazione-ambientale/teamB/
  • File:
    2025-11-12_relazione-stazione-ambientale_v1.2_teamB.pdf
    2025-11-12_dati-luce-umidita-aula3_v1.0_teamB.csv
    2025-11-12_codice-lettura-sensori_v1.3_teamB.ino
    2025-11-12_fig-01-schema-cablaggio_v1.0_teamB.png

Esempio 02 – Correzioni del docente > nuova versione

  • Prima: 2025-11-12_relazione-stazione-ambientale_v1.2_teamB.pdf
  • Dopo correzioni: 2025-11-15_relazione-stazione-ambientale_v1.3_teamB.pdf
  • Changelog (facoltativo): “2025-11-15 v1.3: aggiunte unità SI; rigenerato grafico con etichette leggibili.”

Quick References per lo studio – Prototipi hardware: sicurezza & ordine

 

In laboratorio sicurezza = metodo + ordine. Un prototipo ben organizzato non è solo più “bello”: è più sicuro, più facile da testare e più veloce da riparare. Lavoriamo con alimentazioni, correnti, componenti sensibili: le buone abitudini proteggono persone, strumenti e risultati.

  1. Preparazione dell’area
  • Banco pulito: via oggetti non necessari, liquidi lontani, cavi non incrociati.
  • Illuminazione adeguata, seduta stabile, spazio per notebook/strumenti.
  • Documenti a portata: schema, pinout, datasheet; cartellina con buste (evita “pezzi sparsi”).
  1. Alimentazione: scelte e verifiche
  • Parti sempre disalimentato: cabla a cavo staccato.
  • Tensione e corrente: verifica che la sorgente regga (es. 5 V/2 A per moduli + motori).
  • Polaritá corretta: segna rosso = +, nero = GND; no fili volanti senza colore.
  • Protezione: preferisci alimentatori con limite di corrente o fusibili rapidi; imposta limiti sul banco di alimentazione.
  • GND comune: con più sorgenti, i riferimenti di massa vanno uniti (salvo isolamenti voluti).
  1. Cablaggio e componenti
  • Cavi corti e fissati (fascette/nastro): riduce falsi contatti.
  • Breadboard: limiti (resistenza di contatto, cadute, correnti basse). Per correnti > 200–300 mA, evita breadboard → morsetti/stripboard.
  • Sezione dei fili adeguata (motori ≠ jumper sottili).
  • Polarità di LED, elettrolitici, moduli. Diodo di ricircolo con carichi induttivi (relè/motori).
  • ESD (sensori e IC): tocca massa prima di maneggiare, se possibile usa bracciale ESD.
  1. Strumentazione e misure
  • Multimetro: inizia sul fondo scala più alto; controlla sonde e modalità (V, A, Ω).
  • Misure “prima di accendere”: continuità su alimentazione (niente corto), verifica resistenze sospette.
  • Misure “dopo”: V su pin chiave, I assorbita dal sistema, calore (dito/misuratore IR).
  • Log: annota valori e condizioni (tensione di alimentazione, carico, ambiente).
  1. Procedura di test (incrementale)
  • Un passo alla volta: prima l’alimentazione, poi un sensore, poi un attuatore…
  • Stato noto ad ogni passaggio: se qualcosa “salta”, sai dove guardare.
  • Rollback: se peggiori, torna alla versione stabile precedente.
  1. Chiusura lavori (safety & ordine)
  • Spegni/disalimenta, scollega, lascia un post-it con lo stato del prototipo (“sensore X instabile; rifare cablaggio domani”).
  • Rimetti a posto componenti (sacchetti etichettati), attrezzi, cavi avvolti.
  • Backup: foto cablaggi, schema aggiornato, commit del codice con messaggio chiaro.
  1. Rischi tipici & prevenzione
  • Surriscaldamento: dissipatori/pad termici, correnti entro specifiche.
  • Corto accidentale: fili spelati, breadboard usurate, stagnature “a goccia” → isola e rifinisci.
  • Rumore elettrico: twist dei cavi segnale, condensatori di bypass (0.1 µF vicino ai Vcc), massa stellare.
  • Batterie Li-ion/LiPo: carica solo con circuiti dedicati, non perforare o piegare, mai cortocircuitare, storage a ~3.8 V.
  • Meccanica: bordi vivi, parti in movimento: occhiali protettivi se c’è rischio.

Scarica PDF A4 della guida operativaApri il sorgente Markdown su GitHub

Se non sai cos’è il Markdown segui il link

---
title: "QR – Prototipi hardware: sicurezza & ordine"
version: "1.2"
autore: "<Classe/Studente>"
licenza: "CC BY 4.0"
ultimo_aggiornamento: "2025-10-05"
---

## 1) Preparazione dell’area
- [ ] **Banco pulito** (via liquidi/oggetti inutili), **luce buona**, sedia stabile.
- [ ] **Documenti a vista**: schema, pinout, datasheet (cartella o busta trasparente).
- [ ] PC/Notebook con IDE aperto e cavo **funzionante**.
- [ ] Foto “prima” del banco (torna utile per confronto e relazione).

## 2) Alimentazione (scelte & verifiche)
- [ ] Cabla **a cavo staccato**; alimenta **solo a fine controllo**.
- [ ] Tensione/ corrente **coerenti** con il carico (es. 5 V/2 A).
- [ ] **Polaritá marcata**: rosso = +V, nero = GND; niente fili volanti non isolati.
- [ ] Se possibile, **limite di corrente** sull’alimentatore o fusibile rapido.
- [ ] Con più sorgenti, **GND comune** (salvo isolamenti voluti).

## 3) Cablaggio e componenti
- [ ] **Cavi corti e fissati** (fascette/nastro); evitare anelli e incroci inutili.
- [ ] Breadboard ok per segnali/ piccole correnti; per >300 mA usa morsetti/stripboard.
- [ ] Sezione fili adeguata (motori ≠ jumper sottili).
- [ ] **Polarità**: LED/elettr. corretta; **diodo di ricircolo** con relè/motori.
- [ ] **ESD**: tocca GND prima di maneggiare IC/sensori; se possibile usa bracciale.

## 4) Strumentazione & misure
- [ ] Multimetro: scala corretta (V, A, Ω) e **sonde ben inserite**.
- [ ] **Prima di accendere**: continuità tra +V e GND (no corto).
- [ ] **Dopo**: misura V su pin chiave, **corrente assorbita**, temperatura (dito/IR).
- [ ] Logga dati e condizioni (V aliment., carico, ambiente).

## 5) Procedura di test (incrementale)
1. **Alimenta** → verifica solo la parte di potenza.
2. **Aggiungi** un modulo alla volta (sensore → attuatore).
3. **Stato noto** a ogni passo; se peggiori, **rollback** alla versione stabile.
4. Una modifica per volta (HW *o* SW), poi test.

## 6) Chiusura lavori
- [ ] **Spegni e scollega**.
- [ ] **Post-it** di stato: “sensore X instabile; rifare cablaggio domani”.
- [ ] Riponi componenti/attrezzi; avvolgi cavi.
- [ ] **Backup**: foto cablaggio, schema aggiornato, commit codice con messaggio chiaro.

## 7) Rischi tipici & prevenzione
- **Surriscaldamento** → dissipatori/pad; rispetta correnti massime; ventilazione.
- **Corto** → rifinisci stagnature; isola punti nudi; sostituisci breadboard usurate.
- **Rumore elettrico** → twist cavi segnale, **bypass 0.1 µF** vicino a Vcc, massa a stella.
- **Batterie Li-ion/LiPo** → carica **solo** con circuiti dedicati; non perforare/piegare; mai in corto; storage ~3.8 V.

Esempio – “Il motore non parte e il driver scotta”

Setup

  • Alimentazione 12 V (banco da laboratorio, limite corrente 1.5 A).
  • Driver ponte H (es. L298N o similare), motore DC 6–12 V, Arduino UNO.
  • Cavi: alimentazione 0.5–0.75 mm², segnale jumper corti.

Sintomi

  • A “start”, motore fermo o vibra; driver caldo dopo pochi secondi; LED di alimentazione ok.

Procedura di diagnosi

01. Isola blocchi

    • Scollega Arduino → alimenta solo il driver e il motore in manuale: ponticella IN1=HIGH, IN2=LOW (o usa enable).
    • Se ancora fermo, il problema è driver/motore (non il codice).

02. Verifica alimentazione

    • Misura V_motore a vuoto: ~12 V?
    • Cala a 5–6 V quando provi a muoverlo? → alimentatore in current limit (motore richiede più spunto).
    • Soluzione: alimentatore con corrente di picco più alta o soft-start (PWM graduale).

03. Controlla cablaggio e polarità

    • GND comune tra Arduino e driver.
    • Sezione fili verso motore sufficiente (evita jumper sottili).
    • Diodi di ricircolo: presenti/integrati? Se driver ne è privo, aggiungili.

04. Assorbimento & termica

    • Misura corrente di spunto (metti multimetro in serie): >1.5–2 A? Il L298N satura e scalda.
    • Opzioni: driver più efficiente (MOSFET, es. BTS7960 o ponte H moderno), abbassa tensione o usa PWM limitato all’avvio.

05. Test incrementale

    • Motore scollegato > misura V ai morsetti del driver con PWM 30/60/100%.
    • Se V è stabile e driver non scalda → il problema è carico (motore duro/ingranaggi).
    • Lubrifica/controlla meccanica; prova con un motore “buono”.

Checklist “fatto”

  • Motore avvia fluido a PWM 30→60→100%.
  • Driver < 70 °C dopo 2′ di lavoro (dito o termometro IR).
  • Alimentatore non entra in limit; cavi non scaldano.
  • GND comune, fili fissati, schema aggiornato con modello driver.

Note didattiche

Mostrare agli studenti foto prima/dopo del cablaggio, la tabella di misure (V/I a step di PWM) e un grafico corrente-tempo allo spunto: è evidente perché alcuni driver scaldano.

Errori comuni nell’uso di Arduino – ordine esecuzione operazioni matematiche e overflow nei calcoli


In realtà l’errore che viene commesso non è di carattere informatico, ma puramente matematico, dimenticando l’ordine con cui vengono eseguite le operazioni matematiche.
L’ordine delle operazioni segue le regole di base: moltiplicazioni e divisioni hanno precedenza massima seguono addizioni e sottrazioni. Se si vuole cambiare l’ordine di precedenza bisogna utilizzare le parentesi. Vediamo alcuni esempi.

int valore = 1 + 2 * 3 + 4;

il risultato sarà 11.

// Prof. Michele Maffucci
// Data: 08.02.2020
// Esempio 01: Ordine di esecuzione operazioni matematiche in C

// per stampare una sola volta il messaggio sulla Serial Monitor
bool abilitaMessaggio = 0;

void setup() {
  // inizializzazione della comunicazione seriale
  Serial.begin(9600);
}

void loop() {
  // consente di visualizzare sulla Serial Monitor
  // una sola stampa delle stringa
  if (abilitaMessaggio == 0) {
    // ritardo che evita la doppia stampa del messaggio
    delay(200);
    Serial.println("Calcolo:");
    Serial.println("valore = 1 + 2 * 3 + 4");
    int valore = 1 + 2 * 3 + 4;
    Serial.print("valore = ");
    Serial.println(valore);
    abilitaMessaggio = 1;
  }
}

Per rendere più evidente la sequenza di esecuzione del calcolo possiamo usare le parentesi, pertanto otterremo:

int valore = 1 + (2 * 3) + 4;

Che fornisce sempre il valore 11.

// Prof. Michele Maffucci
// Data: 08.02.2020
// Esempio 02: Ordine di esecuzione operazioni matematiche in C

// per stampare una sola volta il messaggio sulla Serial Monitor
bool abilitaMessaggio = 0;

void setup() {
  // inizializzazione della comunicazione seriale
  Serial.begin(9600);
}

void loop() {
  // consente di visualizzare sulla Serial Monitor
  // una sola stampa delle stringa
  if (abilitaMessaggio == 0) {
    // ritardo che evita la doppia stampa del messaggio
    delay(200);
    Serial.println("Calcolo:");
    Serial.println("valore = 1 + (2 * 3) + 4");
    int valore = 1 + (2 * 3) + 4;
    Serial.print("valore = ");
    Serial.println(valore);
    abilitaMessaggio = 1;
  }
}

Per modificare la precedenza utilizziamo le parentesi:

int valore = ((1 + 2) * 3) + 4;

il risultato sarà 13. Viene eseguito prima il calcolo della parentesi più interna (1+2), poi si passa alla parentesi immediatamente successiva, quindi (3 * 3) e poi il risultato viene sommato a 4.

// Prof. Michele Maffucci
// Data: 08.02.2020
// Esempio 03: Ordine di esecuzione operazioni matematiche in C

// per stampare una sola volta il messaggio sulla Serial Monitor
bool abilitaMessaggio = 0;

void setup() {
  // inizializzazione della comunicazione seriale
  Serial.begin(9600);
}

void loop() {
  // consente di visualizzare sulla Serial Monitor
  // una sola stampa delle stringa
  if (abilitaMessaggio == 0) {
    // ritardo che evita la doppia stampa del messaggio
    delay(200);
    Serial.println("Calcolo:");
    Serial.println("valore = ((1 + 2) * 3) + 4");
    int valore = ((1 + 2) * 3) + 4;
    Serial.print("valore = ");
    Serial.println(valore);
    abilitaMessaggio = 1;
  }
}

Ovviamente, come già spiegato precedentemente, bisognerà sempre fare attenzione che il risultato faccia parte del tipo di dati giusto, ad esempio quando effettuate una divisione tra interi il cui risultato è un numero decimale, o ancora se superate il valore massimo del tipo di dato che state utilizzando. In entrambi i casi il compilatore non vi segnalerà nessun errore.

Vediamo un esempio:

// 60 secondi in un minuto, 60 minuti in un'ora, 24 ore in un giorno
long secondi_in_un_giorno = 60 * 60 * 24;

In teoria, poiché il risultato è 86.400, questo valore potrà essere contenuto in un tipo long.
Ma in realtà il valore realmente memorizzato in “secondi_in_un_giorno” è 20.864.
86.400  supera più di due volte la dimensione di un intero, il calcolo fatto dal compilatore sarà il seguente:
86.400 – 32.768 * 2 = 20.864

// Prof. Michele Maffucci
// Data: 08.02.2020
// Esempio 04: Ordine di esecuzione operazioni matematiche in C
//             errore di calcolo dovute al tipo del dato (dimensione massima).

// per stampare una sola volta il messaggio sulla Serial Monitor
bool abilitaMessaggio = 0;

void setup() {
  // inizializzazione della comunicazione seriale
  Serial.begin(9600);
}

void loop() {
  // consente di visualizzare sulla Serial Monitor
  // una sola stampa delle stringa
  if (abilitaMessaggio == 0) {
    // ritardo che evita la doppia stampa del messaggio
    delay(200);
    Serial.println("Calcolo (errato) numero di secondi in un giorno:");
    Serial.println("secondi_in_un_giorno = 60 * 60 * 24");
    long secondi_in_un_giorno = 60 * 60 * 24;
    Serial.print("Secondi in un giorno = ");
    Serial.println(secondi_in_un_giorno);
    Serial.println("Errore! Il valore doveva essere: 86.400");
    Serial.println("L'errore si verifica perchè il compilatore considera i numeri di tipo int.");
    abilitaMessaggio = 1;
  }
}

Ciò accade perché il compilatore C dell’IDE di Arduino vede un’espressione aritmetica composta da soli numeri interi e quindi considera il risultato come tipo int. Per evitare questo problema bisogna dire al compilatore che deve trattare l’intera espressione come un long aggiungendo L al primo valore che viene valutato nell’espressione:

long secondi_in_un_giorno = 60L * 60 * 24;
// Prof. Michele Maffucci
// Data: 08.02.2020
// Esempio 05: Ordine di esecuzione operazioni matematiche in C
//             Uso corretto del tipo long.

// per stampare una sola volta il messaggio sulla Serial Monitor
bool abilitaMessaggio = 0;

void setup() {
  // inizializzazione della comunicazione seriale
  Serial.begin(9600);
}

void loop() {
  // consente di visualizzare sulla Serial Monitor
  // una sola stampa delle stringa
  if (abilitaMessaggio == 0) {
    // ritardo che evita la doppia stampa del messaggio
    delay(200);
    Serial.println("Calcolo corretto del numero di secondi in un giorno:");
    Serial.println("secondi_in_un_giorno = 60L * 60 * 24");
    long secondi_in_un_giorno = 60L * 60 * 24;
    Serial.print("Secondi in un giorno = ");
    Serial.println(secondi_in_un_giorno);
    Serial.println("Giusto! Abbiamo detto con la L che l'intera espressione è da trattate come un long.");
    Serial.println("");
    abilitaMessaggio = 1;
  }
}

Attenzione sempre alle parentesi!
Se le utilizzate ad esempio come nell’esempio che segue farà andare in overflow il risultato:

long secondi_in_un_giorno_piu_uno = 1L + 60 * (60 * 24);
// Prof. Michele Maffucci
// Data: 08.02.2020
// Esempio 06: Ordine di esecuzione operazioni matematiche in C
//             L'uso non corretto delle parentesi fa andare in overflow il risultato.

// per stampare una sola volta il messaggio sulla Serial Monitor
bool abilitaMessaggio = 0;

void setup() {
  // inizializzazione della comunicazione seriale
  Serial.begin(9600);
}

void loop() {
  // consente di visualizzare sulla Serial Monitor
  // una sola stampa delle stringa
  if (abilitaMessaggio == 0) {
    // ritardo che evita la doppia stampa del messaggio
    delay(200);
    Serial.println("Calcolo errato somma 1 al numero di secondi in un giorno");
    Serial.println("secondi_in_un_giorno_piu_uno = 1L + 60 * (60 * 24)");
    long secondi_in_un_giorno_piu_uno = 1L + 60 * (60 * 24);
    Serial.print("Secondi in un giorno + 1 = ");
    Serial.println(secondi_in_un_giorno_piu_uno);
    Serial.println("Sbagliato! Attenzione sempre alle parentesi!");
    Serial.println("Se le utilizzate ad esempio come indicato farà andare in overflow il risultato");
    abilitaMessaggio = 1;
  }
}

mentre la seguente espressione non farà andare in overflow il calcolo:

long secondi_in_un_giorno_piu_uno = 1 + 60 * (60L * 24);
// Prof. Michele Maffucci
// Data: 08.02.2020
// Esempio 07: Ordine di esecuzione operazioni matematiche in C
//             L'ordine del calcolo viene stabilito dalle parentesi, in questo modo
//             il calcolo non farà andare in overflow il risultato.

// per stampare una sola volta il messaggio sulla Serial Monitor
bool abilitaMessaggio = 0;

void setup() {
  // inizializzazione della comunicazione seriale
  Serial.begin(9600);
}

void loop() {
  // consente di visualizzare sulla Serial Monitor
  // una sola stampa delle stringa
  if (abilitaMessaggio == 0) {
    // ritardo che evita la doppia stampa del messaggio
    delay(200);
    Serial.println("Calcolo errato somma 1 al numero di secondi in un giorno");
    Serial.println("secondi_in_un_giorno_piu_uno = 1 + 60 * (60L * 24)");
    long secondi_in_un_giorno_piu_uno = 1 + 60 * (60L * 24);
    Serial.print("Secondi in un giorno + 1 = ");
    Serial.println(secondi_in_un_giorno_piu_uno);
    Serial.println("Corretto! Il calcolo inizierà dalle parentesi tonde.");
    Serial.println("E' stata aggiunta la L al primo operando tra le parentesi tonde.");
    abilitaMessaggio = 1;
  }
}

Buon Coding a tutti 🙂

La lunga attesa sta per concludersi: Place your Raspberry Pi Order today!

Finalmente!
RS mi ha inviato la mail con cui effettuare l’acquisto di Raspberry Pi B. Spedizione prevista entro 10 settimane ovvero inizio settembre come per altro preannunciato dal negoziante di componentistica elettronica presso cui mi servo e segnalato in precedente post.

E pazientemente attendo 🙂

In allegato mail di RS.

RS: a che punto siamo con gli ordini di Raspberry Pi

Ho appena ricevuto la mail da RS che mi conferma ciò che tutti sapevamo… pazienza infinita, le date non si conoscono ancora.

Gentile Cliente,

Come saprete ormai, molte persone sono state invitate a effettuare le ordinazioni. Sappiamo che le domande importanti sono: “dove mi trovo nella coda degli ordini” e “quando sarete in grado di effettuare il mio ordine”. Attualmente stiamo lavorando per dare un indicazione sulla vostra collocazione nella coda di attesa e probabilmente sui tempi di consegna e speriamo di darvi queste informazioni al più presto. Stiamo anche lavorando per potenziare il nostro sito in modo che possiate inserire il vostro ordine non appena possibile.
….
Grazie per il continuo interesse e la pazienza.

Mail originale:

Dear customer,

As you will know by now, many people have been invited to place their orders. We know the big questions you are asking are: “where am I in your queue?” and “when will I be able to place my order?” We are currently working to give you an indication of where you are in the queue and likely delivery times and hope to share this with you shortly. We are also increasing our website capacity to enable us to invite you to place your order as soon as possible.

While you wait, why not check out just what the Raspberry Pi model B board is capable of by watching our compliance engineers have some fun demonstrating Quake, or see a Raspberry Pi-powered XBMC Media Centre. Also, find out what happened when Eben and Liz visited Maker Faire in the US.

Don’t forget to give us your views on DesignSpark and as always we will be regularly updating our FAQs

Thank you for your continued interest and patience.

RS Components Ltd

e noi cosa facciamo?
Attendiamo 🙂