Archivi categoria: micro:bit

Costruiamo EduRobot Black Panther – kit robotico didattico multipiattaforma

Un robot che costa meno di un libro.

Al fine di supportare i colleghi che seguono i miei corsi, ho realizzato una struttura robotica che deriva da un precedente progetto che ho sviluppato per i miei studenti, si tratta della versione n. 6 del kit robotico che ho chiamato EduRobot, nominata “Black Panther”.

Ho pensato ad una struttura estremamente economica in cui, ad esclusione delle viti di serraggio delle varie parti, il resto dei materiali è costituito da schede di controllo, motori e sensori.

La struttura minima richiede almeno 3 livelli, ma è possibile innalzarla per aggiungere tutta l’elettronica necessaria per espandere le funzionalità del robot.

Tutti gli elementi sono stati stampati in 3D ed il materiale scelto è il PLA.

I costi complessivi di stampa, viti di serraggio e dadi, non supera i 10€.

Per prelevare i sorgenti per la stampa 3D seguire il link sulla mia pagina su Thingiverse.

Le funzioni che possono essere programmate sono le medesime dei più blasonati kit robotici in commercio, pertanto se la vostra scuola ha acquistato una stampante 3D, sarà sufficiente una manciata di elettronica a basso costo per realizzerete robot assolutamente inclusivo, sia per il portafoglio delle famiglie degli allievi che di quelle del docente.

Il cilindro di occupazione del robot ha un diametro di 135 mm e i motori sono esattamente centrati rispetto alla base del cilindro.

Per evitare spese aggiuntive al posto delle caster ball ho preferito utilizzare un elemento dotato di superficie curva, ovviamente tale elemento se lo desidera può essere sostituito da una caster ball metallica.

Sul terzo livello del robot sono stati già inseriti fori per fissare i microcontrollori: Arduino UNO R3 e BBC micro:bit e computer Raspberry Pi 3 o 4.

Sempre sul terzo livello nel caso si desidera utilizzare un BBC micro:bit, è possibile fissare una scheda motorbit.

Nel caso il controllo avvenisse con Arduino UNO R3 la scheda di controllo motori è costituita da un L298N che andrà impilato sulla scheda Arduino, secondo quanto indicato nel tutorial che segue.

Nei kit di base sul 3’ livello viene utilizzata una minibreadboard per facilitare la connessione tra i vari dispositivi elettronici.

Per entrambe le versioni il robot è dotato di un sensore ad ultrasuoni HC-SR04 fissato alla struttura. Per la valutazione della distanza dell’ostacolo si è preferito evitare l’utilizzo di un servomotore che facesse ruotare il sensore ad ultrasuoni al fine di ridurre i costi. La rotazione che valuta la distanza dell’ostacolo più vicino verrà svolta ruotando l’intero robot rispetto al suo baricentro.

Il robot è dotato di due sensori ad infrarossi da impiegare per la realizzazione di un robot segui linea.

Nella versione con scheda Arduino UNO R3 sarà possibile effettuare un controllo mediante scheda Bluetooth HC-05, il cui supporto potrà essere fissato sul terzo piano del robot.

Di seguito la lista dei materiali e le relative fotografie che ne dettagliano la costruzione delle parti meccaniche e delle schede, non viene dettagliata la connessione elettrica tra le parti e la programmazione, per ora riservato ai colleghi che frequentano o frequenteranno i miei corsi, ma molto probabilmente nel prossimo futuro, con un po’ di calma lavorativa estenderò a tutti la parte di spiegazione elettronica e programmazione.

Sto sviluppando corsi in cui mostro come, usando la medesima struttura robotica, sarà possibile controllare il robot mediante un Raspberry Pi oppure un Raspberry Pi Pico.

Per i colleghi insegnanti svolgerò nel prossimo futuro ulteriori corsi gratuiti a cui potrete iscrivervi attraverso la piattaforma ScuolaFutura, corsi che saranno svolti i diverse modalità: in presenza, MOOC e blended.

Per essere aggiornati sui progetti e sui corsi che svolgerò nel prossimo futuro vi invito ad iscrivervi al mio sito inserendo la vostra e-mail nel campo: “Iscriviti al blog tramite email” nella colonna destra in alto, in questo modo potrete essere aggiornati tempestivamente.

La sequenza di montaggio indicata di seguito è quella che secondo il mio parere vi consente di montare l’intera struttura in non più di 60 minuti, è essenziale però munirsi di cacciaviti a stella e pinza a becco lungo, ottimo sarebbe utilizzare un piccolo avvitatore.

In generale non è richiesta nessuna saldatura a stagno in quanto i motori (gialli) a 6V utilizzati possono essere acquistati anche con cavi già saldati, attenzione però che la connessione tra motore e cavi elettrici potrebbe essere delicata, pertanto si consiglia di serrare i cavi mediante una fascetta stringicavi, come dettagliato di seguito.

Se è necessario prolungare la lunghezza dei cavi è possibile adottare diversi metodi, quello che preferisco è l’utilizzo di connettori wago che possono essere acquistati con diverso numero di fori, nel caso di questo kit robot sono sufficienti wago da 3 fori.

Ovviamente, nel caso di rotture o disconnessione dei cavi dai poli del robot bisognerà per forza ricorrere alla saldatura a stagno. 

La fotografia che segue mostra tutti gli elementi da stampare in 3D per le due versioni di robot.

Di seguito elenco materiali e sequenza di montaggio.

Continua a leggere

BBC micro:bit – usare un sensore DHT 22

Durante il mio ultimo corso sulla realizzazione di mini serre indoor, ho fornito ai corsisti le competenze di base per usare una serie di sensori controllati dal micro:bit. Alcuni colleghi possedevano kit generici di componentistica elettronica tra cui sensori non disposti PCB board, pertanto per alcuni non erano presenti quei componenti che permettevano l’interfacciamento al microcontrollore. È il caso ad esempio del DHT22 sensore di temperatura è umidità relativa che ha una modalità di utilizzo molto simile al più noto ed economico DHT11.

Le caratteristiche tecniche dei due sensori sono indicate di seguito:

DHT11 DHT22
Intervallo di temperatura 0 to 50 ºC +/-2 ºC -40 to 80 ºC +/-0.5ºC
Intervallo di umidità 20 to 90% +/-5% 0 to 100% +/-2%
Risoluzione Umidità: 1%
Temperatura: 1ºC
Umidità: 0.1%
Temperatura: 0.1ºC
Tensione di funzionamento 3 – 5.5 V DC 3 – 6 V DC
Corrente di funzionamento 0.5 – 2.5 mA 1 – 1.5 mA
Periodo di campionamento 1 secondo 2 secondo

Il sensore DHT22 può essere acquistato nelle due modalità: su PCB board oppure in modalità solo componente come indicato nell’immagine che segue:

Il DHT22 per poter funzionare necessità di un resistore di pull-up che nella versione PCB è già presente. Nel caso si dispone del solo sensore è necessario aggiungere un resistore tra i 5k ohm e i 10k ohm connesso come nell’immagine che segue:

La modalità di utilizzo del sensore con il micro:bit è estremamente semplice e richiede solamente l’installazione di un’estensione che potrete cercare facendo clic su “Extensions” ed inserendo nel campo di ricerca dht22. L’estensione sarà DHT11_DHT22 in grado di gestire sia il DHT11 che il DHT22.

Seguire il link per consultare la pagina di riferimento dell’estensione utilizzata.

Come potrete leggere l’istruzione di configurazione riportata nell’immagine che segue è costituita da una serie di campi:

  • Query: permette la selezione del tipo di sensore, DHT11 o DHT22
  • Data pin: è il pin del micro:bit a cui dovremo connettere il pin data del DHT22
  • Pin pull-up: indica se presente il resistore di pull-up nel nostro caso dovrà essere impostato a true. Nel caso fosse impostato a false verrà utilizzato il resistore di pull-up interno del micro:bit che è di circa 13 K ohm.
  • Serial output: stabilisce se si vuole un output sulla serial monitor, false non mostra i dati, true li mostra
  • Wait 2 sec after query: se impostato su true consente di fissare l’intervallo tra due interrogazioni al sensore a 2 secondi, lasciare questa impostazione. È importante non ridurre questo intervallo altrimenti il sensore non riuscirà a fornirci la misura.

Durante la comunicazione tra sensore e micro:bit viene effettuato un controllo di eventuali errori di comunicazione, se ciò accade leggerete in output il codice di errore -999 se l’errore persiste per più secondo molto probabilmente il problema è di carattere elettivo, nella maggior parte dei casi una connessione mancante o errata connessione elettrica tra i dispositivi.

Aggiungo alcuni programmi che mostrano il funzionamento del DHT22.

Stampa su display della temperatura rilevata:

Link al programma.

Stampa su display della temperatura e dell’umidità rilevata:

Link al programma.

Stampa su Serial Monitor della temperatura rilevata:

Link al programma.

Stampa sulla serial monitor temperatura ed umidità rilevata:

Link al programma.

Buon Making a tutti 🙂

BBC micro:bit – controllare due motori DC da 6 V con la scheda motor:bit

Durante i corsi di formazione sulla realizazione di robot didattici che svolgo per i docenti utilizzo anche la scheda motor:bit di Elecfreaks. Di seguito, riprendendo parte della documentazione del wiki del prodotto pubblico l’introduzione alla realizzazione di un EduRobot basato su questa scheda motore. Per i dettagli costruttivi e di programmazione rimando ai miei corsi.

Motor:bit è una scheda di controllo motori utilizzabile con micro:bit. L’integrato il driver utilizzato è il TB6612, in grado di pilotare due motori con una corrente massima erogata per ciascun canale di 1.2A. Sulla scheda sono disposti 16 pin maschi I/O e su ciascuno di essi è presente il pin GND e Vcc, i pin 19 e 20 dedicati alla comunicazione I2C, i pinn 13, 14, 15 per la comunicazione SPI. Sulla scheda i pin I/O da P3 a P7 e da P9 a P10 permettono di pilotare direttamente dispositivi a 3.3V; mentre i pin da P13 a P16 e da P19 a P20 è possibile selezionare la tensione tensione 3.3V/5V mediante uno switch specifico. Sulla scheda è inoltre presente un buzzer passivo.

Caratteristiche

elemento parametro
nome del prodotto motor:bit
tensione di alimentazione 6-9 V DC
numero massimo di motori 2
massima corrente erogabile per ciascun motore 1,2A
numero di pin digitali 12
I2C presente
SPI presente
buzzer passivo presente
dimensione 60mmx47,5mm
peso 20g

Dimensioni

Pinout

Elementi principli della scheda

Connettore motore M1-M2

Ad M1 e M2 è possibile collegare separatamente a un motore DC con una corrente massima di 1.2A.

Buzze passivo

Il buzzer passivo è connesso al pin P0 di micro:bit e con esso, così come accade per il buzzer del micro:bit V2 è possibile riporodurre musica.

Switch di alimentazione

In basso a destra della scheda è presente uno switch che consente di accendere e spegnere la scheda.

Selezione alimentazione: 3,3V / 5 V

La selezione del livello di tensione può essere fatta solo per i pin: P13, P14, P15, P16, P19, P20.

Pin G-VCC-S Standard

4 porte GPIO (P13-P16) e 1 connettore dedicato per la comunicazione I2C (P19-P20). E’ possibile collegare dispositivi a 3.3V/5V in base selezione fatta con lo switch di selezione alimentazione.

Pin G-3V3-S Standard

E’ possibile collegare 8 dispositivi che lavorano con un’alimentazione di 3.3V. Tra questi, P3, P4, P10 possono essere utilizzati come connettori di ingresso per segnali analogici.

Connettore micro:bit

E’ possibile connettere un micro:bit V1 o V2.

Collegamenti elettrici

Programmazione

Dal MakeCode Editor aggiungere l’estensione motorbit:

Scrivere il codice che consente di far ruotare i motori in sequenza per 2 secondi:

programma: motorbit-01

Per ulteriori approfondimenti e sperimentazioni vi rimando ai miei corsi di prossima uscita su portale ScuolaFutura oppure Tecnica della Scuola.

Un base robotica molto semplice: EduRobot 4WD

Durante le attività di robotica sia con allievi che con docenti la fase di costruzione meccanica può richiedere parecchio tempo, pertanto ho pensato di realizzare qualcosa di molto semplice su cui disporre l’elettronica di controllo che si preferisce. Per rendere più interessante l’attività di programmazione ho realizzato un robot 4WD da utilizzare per costruire diverse tipologie di robot: controllati remotamente via Bluetooth, WiFi, autonomi, inseguitore di persone, inseguitore di luce, rilevatore di gas, line follower, controllato dalla voce umana.

5 minuti di Yoga creativo per recuperare elementi da altri progetti in questo modo è nato EduRobot 4WD, su questa base solamente i fori per le forcelle che sostengono i motori e fori per passaggio cavi, tutto il resto sarà a carico del Maker che farà i fori opportuni con un piccolo trapano o cacciavite in modo da disporre l’elettronica che desidera, costo di stampa dell’intera struttura 1€.

Per chi seguirà il mio prossimo corso di robotica organizzato da Tecnica della Scuola: “Creare un kit robotico educativo a basso costo – 4′ edizione”, renderò disponibile il codice di controllo e nei prossimi giorni per tutti, sul mio sito personale, i file sorgenti per realizzare la struttura di supporto.

Buon Making a tutti 🙂

E’ nato un nuovo robot per la primaria: EduRobot Block


L’idea di questa nuova piattaforma basata su inserti Lego Duplo compatibili nasce dall’esperienza maturata da una serie di progettualità passate, la prima si riferisce alla creazione di un LegoDuino , un robot didattico basato su motori e struttura Lego Mindstorms NXT in cui avevo sostituito l’unità centrale Lego con un box costituito da una scheda Arduino e schede motori. La seconda esperienza, DotBot:bit Lego version un piccolo robot controllato da micro:bit e scheda Servo:Lite di Kitronik per gestire i servomotori a rotazione continua e nello stesso modo WalkerBot:bit Lego version, un robot insetto a 4 zampe. Seguendo i link dei robot sopra citati trovate tutti i dettagli anche per la realizzazione delle strutture.
Rendere compatibili i robot con innessti bricks e Technics espande senza dubbio le possibilità creative degli studenti. Aggiungere la possibilità di utilizzare innesti lego Duplo compatibili nasce da alcune osservazioni, la prima è l’esperienza maturata da Claudio Gasparini che per primo ha sviluppato l’idea di un robot basato su Lego Duplo, io ho ripreso l’idea del progetto iniziale e ne ho realizzato una versione personalizzata e replicabile all’infinito mediante stampa 3D.

Ho sperimentato EduRobot Block in attività laboratoriali sviluppate dai colleghi della primaria, su cui ho avuto diversi feedback e richieste di espansione pertanto ho pensato che potesse essere interessante offrire alle scuole gli oggetti per la realizzazione di piccoli robot realizzati stampanto in 3D blocchi Lego Duplo compatibili in cui non sono presenti viti, la cui costruzione avviene innestando ed incastrando oggetti: servomotori a rotazione continua, schede micro:bit, pennarelli per far disegnare al robot.

Su questo robot ho avuto riscontro positivo, al punto che i colleghi desiderano inserirlo nelle dotazioni delle prossime aule innovative dotate di stampanti 3D, pertanto ho deciso di rendere disponibile i sorgenti grafici per la realizzare questa prima versione, in questo modo sarà possibile aggiungere ai più blasonati kit robotici commerciali qualcosa di didatticamente economico, funzionale ed espandibile in funzione della fantasia dei bambini. Sono in fase di progetto di ulteriori ausili didattici per altre tipologie di attività laboratoriali, ne darò notizia più avanti.

Se siete interessati a realizzare la struttura del robot seguite il link su Thingiverse da cui potrete prelevare i file per la stampa 3D.

Questo ed altre strutture robotiche realizzabili a basso costo saranno mostrate e programmate durante i mie prossimi corsi, il primo in partenza tra breve lunedì prossimo a cui potete ancora iscrivervi:

Tecnica della Scuola: Creare un kit robotico educativo a basso costo – 4′ edizione un corso full immersion per colleghi anche non di materie tecniche. Mi concentrerò sull’aspetto progettuale. Per i partecipanti fornirò schede di lavoro e anteprime dei prossimi lavori in progetto.

Per maggiori informazioni sul programma e modalità di iscrizione seguire il LINK.

Con molti dei colleghi che hanno partecipato ai mie corsi ho intrapreso un’attività di ricerca e azione, anche a distanza con cui si sono attivate relazioni di scambio didattico e collaborazine su progetti didattici molto interessanti, ho chiamato questa esperienza TechEd Lab, una sorta di FabLab che si sviluppa sia online che in presenza. Da aprile prossimo il TechEd Lab inizierà le sue attività in presenza, ma per questo fornirò dettagli più avanti.

Buon Making a tutti 🙂