Archivi tag: sperimentare

Quick References per lo studio – Prototipi hardware: sicurezza & ordine

 

In laboratorio sicurezza = metodo + ordine. Un prototipo ben organizzato non è solo più “bello”: è più sicuro, più facile da testare e più veloce da riparare. Lavoriamo con alimentazioni, correnti, componenti sensibili: le buone abitudini proteggono persone, strumenti e risultati.

  1. Preparazione dell’area
  • Banco pulito: via oggetti non necessari, liquidi lontani, cavi non incrociati.
  • Illuminazione adeguata, seduta stabile, spazio per notebook/strumenti.
  • Documenti a portata: schema, pinout, datasheet; cartellina con buste (evita “pezzi sparsi”).
  1. Alimentazione: scelte e verifiche
  • Parti sempre disalimentato: cabla a cavo staccato.
  • Tensione e corrente: verifica che la sorgente regga (es. 5 V/2 A per moduli + motori).
  • Polaritá corretta: segna rosso = +, nero = GND; no fili volanti senza colore.
  • Protezione: preferisci alimentatori con limite di corrente o fusibili rapidi; imposta limiti sul banco di alimentazione.
  • GND comune: con più sorgenti, i riferimenti di massa vanno uniti (salvo isolamenti voluti).
  1. Cablaggio e componenti
  • Cavi corti e fissati (fascette/nastro): riduce falsi contatti.
  • Breadboard: limiti (resistenza di contatto, cadute, correnti basse). Per correnti > 200–300 mA, evita breadboard → morsetti/stripboard.
  • Sezione dei fili adeguata (motori ≠ jumper sottili).
  • Polarità di LED, elettrolitici, moduli. Diodo di ricircolo con carichi induttivi (relè/motori).
  • ESD (sensori e IC): tocca massa prima di maneggiare, se possibile usa bracciale ESD.
  1. Strumentazione e misure
  • Multimetro: inizia sul fondo scala più alto; controlla sonde e modalità (V, A, Ω).
  • Misure “prima di accendere”: continuità su alimentazione (niente corto), verifica resistenze sospette.
  • Misure “dopo”: V su pin chiave, I assorbita dal sistema, calore (dito/misuratore IR).
  • Log: annota valori e condizioni (tensione di alimentazione, carico, ambiente).
  1. Procedura di test (incrementale)
  • Un passo alla volta: prima l’alimentazione, poi un sensore, poi un attuatore…
  • Stato noto ad ogni passaggio: se qualcosa “salta”, sai dove guardare.
  • Rollback: se peggiori, torna alla versione stabile precedente.
  1. Chiusura lavori (safety & ordine)
  • Spegni/disalimenta, scollega, lascia un post-it con lo stato del prototipo (“sensore X instabile; rifare cablaggio domani”).
  • Rimetti a posto componenti (sacchetti etichettati), attrezzi, cavi avvolti.
  • Backup: foto cablaggi, schema aggiornato, commit del codice con messaggio chiaro.
  1. Rischi tipici & prevenzione
  • Surriscaldamento: dissipatori/pad termici, correnti entro specifiche.
  • Corto accidentale: fili spelati, breadboard usurate, stagnature “a goccia” → isola e rifinisci.
  • Rumore elettrico: twist dei cavi segnale, condensatori di bypass (0.1 µF vicino ai Vcc), massa stellare.
  • Batterie Li-ion/LiPo: carica solo con circuiti dedicati, non perforare o piegare, mai cortocircuitare, storage a ~3.8 V.
  • Meccanica: bordi vivi, parti in movimento: occhiali protettivi se c’è rischio.

Scarica PDF A4 della guida operativaApri il sorgente Markdown su GitHub

Se non sai cos’è il Markdown segui il link

---
title: "QR – Prototipi hardware: sicurezza & ordine"
version: "1.2"
autore: "<Classe/Studente>"
licenza: "CC BY 4.0"
ultimo_aggiornamento: "2025-10-05"
---

## 1) Preparazione dell’area
- [ ] **Banco pulito** (via liquidi/oggetti inutili), **luce buona**, sedia stabile.
- [ ] **Documenti a vista**: schema, pinout, datasheet (cartella o busta trasparente).
- [ ] PC/Notebook con IDE aperto e cavo **funzionante**.
- [ ] Foto “prima” del banco (torna utile per confronto e relazione).

## 2) Alimentazione (scelte & verifiche)
- [ ] Cabla **a cavo staccato**; alimenta **solo a fine controllo**.
- [ ] Tensione/ corrente **coerenti** con il carico (es. 5 V/2 A).
- [ ] **Polaritá marcata**: rosso = +V, nero = GND; niente fili volanti non isolati.
- [ ] Se possibile, **limite di corrente** sull’alimentatore o fusibile rapido.
- [ ] Con più sorgenti, **GND comune** (salvo isolamenti voluti).

## 3) Cablaggio e componenti
- [ ] **Cavi corti e fissati** (fascette/nastro); evitare anelli e incroci inutili.
- [ ] Breadboard ok per segnali/ piccole correnti; per >300 mA usa morsetti/stripboard.
- [ ] Sezione fili adeguata (motori ≠ jumper sottili).
- [ ] **Polarità**: LED/elettr. corretta; **diodo di ricircolo** con relè/motori.
- [ ] **ESD**: tocca GND prima di maneggiare IC/sensori; se possibile usa bracciale.

## 4) Strumentazione & misure
- [ ] Multimetro: scala corretta (V, A, Ω) e **sonde ben inserite**.
- [ ] **Prima di accendere**: continuità tra +V e GND (no corto).
- [ ] **Dopo**: misura V su pin chiave, **corrente assorbita**, temperatura (dito/IR).
- [ ] Logga dati e condizioni (V aliment., carico, ambiente).

## 5) Procedura di test (incrementale)
1. **Alimenta** → verifica solo la parte di potenza.
2. **Aggiungi** un modulo alla volta (sensore → attuatore).
3. **Stato noto** a ogni passo; se peggiori, **rollback** alla versione stabile.
4. Una modifica per volta (HW *o* SW), poi test.

## 6) Chiusura lavori
- [ ] **Spegni e scollega**.
- [ ] **Post-it** di stato: “sensore X instabile; rifare cablaggio domani”.
- [ ] Riponi componenti/attrezzi; avvolgi cavi.
- [ ] **Backup**: foto cablaggio, schema aggiornato, commit codice con messaggio chiaro.

## 7) Rischi tipici & prevenzione
- **Surriscaldamento** → dissipatori/pad; rispetta correnti massime; ventilazione.
- **Corto** → rifinisci stagnature; isola punti nudi; sostituisci breadboard usurate.
- **Rumore elettrico** → twist cavi segnale, **bypass 0.1 µF** vicino a Vcc, massa a stella.
- **Batterie Li-ion/LiPo** → carica **solo** con circuiti dedicati; non perforare/piegare; mai in corto; storage ~3.8 V.

Esempio – “Il motore non parte e il driver scotta”

Setup

  • Alimentazione 12 V (banco da laboratorio, limite corrente 1.5 A).
  • Driver ponte H (es. L298N o similare), motore DC 6–12 V, Arduino UNO.
  • Cavi: alimentazione 0.5–0.75 mm², segnale jumper corti.

Sintomi

  • A “start”, motore fermo o vibra; driver caldo dopo pochi secondi; LED di alimentazione ok.

Procedura di diagnosi

01. Isola blocchi

    • Scollega Arduino → alimenta solo il driver e il motore in manuale: ponticella IN1=HIGH, IN2=LOW (o usa enable).
    • Se ancora fermo, il problema è driver/motore (non il codice).

02. Verifica alimentazione

    • Misura V_motore a vuoto: ~12 V?
    • Cala a 5–6 V quando provi a muoverlo? → alimentatore in current limit (motore richiede più spunto).
    • Soluzione: alimentatore con corrente di picco più alta o soft-start (PWM graduale).

03. Controlla cablaggio e polarità

    • GND comune tra Arduino e driver.
    • Sezione fili verso motore sufficiente (evita jumper sottili).
    • Diodi di ricircolo: presenti/integrati? Se driver ne è privo, aggiungili.

04. Assorbimento & termica

    • Misura corrente di spunto (metti multimetro in serie): >1.5–2 A? Il L298N satura e scalda.
    • Opzioni: driver più efficiente (MOSFET, es. BTS7960 o ponte H moderno), abbassa tensione o usa PWM limitato all’avvio.

05. Test incrementale

    • Motore scollegato > misura V ai morsetti del driver con PWM 30/60/100%.
    • Se V è stabile e driver non scalda → il problema è carico (motore duro/ingranaggi).
    • Lubrifica/controlla meccanica; prova con un motore “buono”.

Checklist “fatto”

  • Motore avvia fluido a PWM 30→60→100%.
  • Driver < 70 °C dopo 2′ di lavoro (dito o termometro IR).
  • Alimentatore non entra in limit; cavi non scaldano.
  • GND comune, fili fissati, schema aggiornato con modello driver.

Note didattiche

Mostrare agli studenti foto prima/dopo del cablaggio, la tabella di misure (V/I a step di PWM) e un grafico corrente-tempo allo spunto: è evidente perché alcuni driver scaldano.

Educare alla sperimentazione insegnando l’elettronica

Non mi stancherò mai di dirlo durate i miei interventi a scuola e sul mio blog, ma il modo migliore per apprendere è fare e costruire, manipolare e modificare gli oggetti che ci circondano per comprenderne il funzionamento ed adattarli alle nostre esigenze. Un apprendimento da “maker” e da esploratore e tutto quello che serve per far si che uno studente possa con passione plasmare il proprio futuro.

Questo piccolo e breve pensiero è nato subito dopo l’osservazione del filmato che vi allego, in cui viene pubblicizzato lo SparkFun National Tour che ha come obiettivo la condivisione della passione per l’elettronica con studenti e insegnanti: fare e costruire per educare i giovani studenti alla sperimentazione, un modo innovativo di fare formazione.

Oggi 17 febbraio inaugurazione di Fablab Torino

Apre oggi all’interno delle Officine Arduino Fablab, laboratorio permanente per la sperimentazione e la fabbricazione digitale.

Dal blog Arduino:


Ci è saltato in mente che Arduino poteva fungere ancora da “incubatore” di idee nuove: le macchine ci sono come c’è la voglia di creare uno spazio dove raccogliere dei talenti per sviluppare nuovi prodotti. Fortunatamente abbiamo trovato sulla nostra strada il partner perfetto per chiudere il cerchio: il co-working Toolbox a Torino si è dato disponibile a darci uno spazio per 18 mesi e da li sta nascendo Officine Arduino.
Officine Arduino è una nuova azienda basata a Torino, incubata da Arduino, che da un lato svilupperà nuove idee e prodotti “open” e da un altro farà da “nido” al nuovo FabLab Torino.
Ci piaceva il nome “Officine” per richiamare il sapore delle vecchie piccole aziende italiane che dal nulla si sono inventate di tutto.
Un’azienda nuova, una combinazione di Azienda, FabLab e Makerspace unica nel mondo per credere nei giovani talenti torinesi.

L’appuntamento è per oggi, 17 febbraio alle 18,30 in Toolbox Coworking, via Agostino da Montefeltro, 2A Torino