Archivi tag: arduino

Arduino – misurare tensioni superiori a 5V dc utilizzando un partitore di tensione

Nella precedente lezione abbiamo visto come misurare una tensione non superiore ai 5V dc, vedremo ora come realizzare un semplice circuito che permette mediante un partitore di tensione la misurazione di tensioni fino a 9 Volt. Dimensionando opportunamente le resistenze di partizione potremo effettuare misure per tensioni elettriche superiori.

Precisazione importante

Gli esempi riportati in questa e nella precedente lezione ed inoltre la gran parte degli esempio classici che trovate online, sono pensati per far comprendere il funzionamento del convertitore A/D, ma è opportuno fare alcune considerazioni sulla precisione di lettura, ovvero degli errori commessi dal convertitore A/D e sull’imprecisione delle tensioni di riferimento usate dal microcontrollore per fornirvi la misura. Questo sarà argomento di una prossima lezione e vedremo come ridurre l’errore di misura.

Per rendere semplice la realizzazione utilizzeremo la batteria da 9V, ma se intendete avere dei limiti di misura diversi e superiori a 9V dovrete apportare modifiche ai valori dei componenti, ma le formule esposte restano le medesime.

Prima di procedere con la realizzazione pratica è essenziale comprendere come dimensionare le resistenze del partitore, inoltre è essenziale che la tensione sul pin analogico A0 non superi il valore di 5V. Per effettuare il dimensionamento del circuito fissiamo la massima tensione misurabile Vmis_max  a 9V e imponiamo il valore di uno dei due resistori, ad esempio R1 in modo da poter ricavare il valore di R2.

Vi ricordo inoltre che sarebbe opportuno, una volta fissate le resistenze, fare qualche considerazione sulla corrente massima entrante in A0 in modo che non venga superato il valore di 40 mA corrente massima di I/O sui pin analogici e digitali di Arduino Uno R3, ma come le resistenze che sono state scelte non correremo alcun rischio, però esporrò ugualmente il calcolo.

Nello schema che segue Vmis rappresenta la tensione da misurare, Vadc la tensione sul pin A0. I è la corrente totale che circola nel circuito.

Sappiamo che la tensione Vadc ai capi di R2 non dovrà superare i 5V. Le tensioni su R1 ed R2 saranno:

(a) VR1 = R1*I
(b) VR2 = R2*I

Pertanto la tensione Vmis sarà

(c) Vmis = VR1 + VR2 = R1*I+R2*I = (R1+R2)*I

da cui ricaviamo:

(d) I = Vmis /(R1+R2)

Sostituendo I in (a) e (b) avremo:

(e) VR1 = R1*I = R1 * Vmis /(R1+R2)
(f) VR2 = R2*I = R2 * Vmis /(R1+R2)

Per il calcolo di R2 consideriamo la formula (f) sostituendo i valori fissati, Vmis_max e R1, ricordando che VR2 è la tensioni in A0, cioè Vadc:

⇒ VR2 =  R2 * Vmis /(R1+R2)

⇒ R2 /(R1+R2)  = VR2/Vmis_max

⇒ R2 /(R1+R2)  = 5/9

⇒ R2 /(R1+R2)  = 0,56

⇒ R2  = 0,56*R1 + 0,56*R2

⇒ R2*(1-0,56) = 0,56*R1

⇒ R2 = 0,56 *R1/0,44

⇒ R2 = 0,56 * 27 * 103/0,44 = 34,363 * 103 = 34,363 Kohm

Scelgo come valore commerciale prossimo (e che dispongo nel mie scorte) il valore di 33 Kohm, quindi:

  • R1 = 27 Kohm
  • R2 = 33 Kohm

Per quanto riguarda la corrente entrante in A0, utilizziamo la formula (b):

VR2 = R2*I

I = VR2/R2

I = 5V/33000 Ω = 0,00015 A = 0,15 mA

ben al di sotto del valore massimo del valore accettabile su un pin I/O di Arduino che è di 40mA.

Schema di collegamento

Programmazione

Sviluppiamo il codice necessario per la lettura della tensione e partendo dal primo sketch della lezione precedente modifichiamone alcune parti, nei commenti la spiegazione delle varie parti.

Nel codice bisognerà tenere in conto che la tensione su A0 è data dal calcolo della partizione di tensione, pertanto sapendo che Vmis = Vadc, dalla forma (f) abbiamo:

⇒ VR2 = R2*I = R2 * Vmis /(R1+R2)

⇒ VR2 = Vadc = R2 * Vmis /(R1+R2)

⇒ Vmis = Vadc * (R1+R2)/R2

Che sarà la formula che ci consentirà di rilevare la misura.

// Prof. Maffucci Michele
// Esempio 01: Misura una tensione di 9V con Arduino
// utilizzando variabili di tipo float
// Data: 03.10.2021

// tensione di riferimento massima misurabile
const float tensioneDiRiferimento = 5.0;

float R1 = 27000.0; // 27 Kohm
float R2 = 33000.0; // 33 Kohm

float volt_adc = 0.0;
float volt_mis = 0.0;

void setup() {
  Serial.begin(9600);
  //analogReference(DEFAULT);
}
void loop() {
  // legge il valore su A0 (su R2), cioè la tensione Vadc e lo trasforma
  // in un valore numerico tra 0 e 1023

  int valoreLetto = analogRead(A0);

  // Tensione in ingresso ad A0, cioè la tensione Vadc
  // calcolo della proporzione
  // volt:tensioneDiRiferimento = valoreLetto:1023.0
  // da cui si ricava la formula che segue

  volt_adc = (valoreLetto/1023.0) * tensioneDiRiferimento;

  //Stampa del valore letto dall'ADC
  Serial.print("Valore ADC = ");
  Serial.println(valoreLetto);

  // calcolo della tensione di ingresso Vmis

  volt_mis = volt_adc*(R1+R2)/R2;

  // stampa sulla Serial Monitor la tensione misurata
  Serial.print("Tensione di ingresso = ");
  Serial.println(volt_mis);
  Serial.println(" ");

  delay(1000);
}

Esercizi per i miei studenti

Esercizio 1
Dimensionare il Circuito per misurare una tensione massima di 12V

Esercizio 2
Realizzare uno sketch Arduino che permette di dimensionare il circuito prendendo in  input, attraverso la Serial Monitor il valore massimo misurabile ed il valore di R1 e restituisce il valore di R2 calcolato.

Esercizio 3
Realizzare le medesime funzionalità dell’esercizio 2, ma il valore restituito di R2 deve essere sia quello calcolato che quello commerciale immediatamente superiore o inferiore al valore calcolato.

Buon Coding a tutti 🙂

Arduino – misurare tensioni continue fino a 5V

La misurazione di una tensione con Arduino è un esercizio standard utilizzato per spiegare come funziona il convertitore Analogico Digitale sulla scheda. Nell’esempio che segue verrà mostrato come visualizzare sulla Serial Monitor la tensione di una batterie da 1,5V ma in generale di una tensione non superiore ai 5V, seguono poi una serie di esercizi per i miei studenti.
Nella prossima lezione mostreremo come misurare una tensione superiore ai 5V.

ATTENZIONE
E’ essenziale ricordare che non bisogna in alcun modo inserire tensioni superiori a 5V sui pin di Arduino, in quanto potreste distruggere irrimediabilmente la scheda.

Per la rilevazione di una tensione elettrica su un pin analogico viene utilizzata la funzione analogRead, che come più volte indicato su questo sito, è in grado di convertire una tensione tra 0V e 5V continui in un valore numerico intero con risoluzione di 10 bit tra 0 e 1023, operazione svolta dal convertitore A/D.

Ricordo che l’analogRead(pin) legge il valore di tensione (compreso tra 0 e 5V) applicato sul piedino analogico ‘pin’ con una risoluzione di 10 bit e la converte in un valore numerico compreso tra 0 e 1023, corrispondente quindi ad un intervallo di 1024 valori, pertanto il valore unitario corrisponde a:

Vu = 5V/1023 = 4,89 mV

Per conoscere il valore di tensione rilevato sarà sufficiente moltiplicare la tensione unitaria Vu per il valore restituito dalla funzione analogRead(pin), quello che chiamiamo valore quantizzato Vq compreso tra 0 e 1024, il valore misurato Vm sarà:

Vm = Vu x Vq

e sapendo che Vu corrisponde a 4,89 mV possiamo scrivere:

Vm = 4,89 x Vq

Nota per i miei allievi: riprenderemo questo semplice calcolo qundo utilizzeremo ad esempio i sensori di temperatura.

Il semplice schema di collegamento è riportato nell’immagine che segue:

Per stampare sulla Serial Monitor la tensione ai capi della batteria, useremo valori di tipo float (in virgola mobile), che come indicato nel mio post: “Arduino: tipi di dati – ripasso” possiamo esprime valori compresi tra –3.4028235E+38 e 3.4028235E+38.
La stampa di numeri in virgola mobile sula Serial Monitor verrà rappresentata con numeri che hanno al massimo con due cifre decimali, riprenderemo questo aspetto nel secondo esempio di questa lezione.

// Prof. Maffucci Michele
// Esempio 01: Misura di tensioni continue non superiori a 5V
// utilizzando variabili di tipo float
// Data: 01.10.2021

// tensione di riferimento predefinita sulla scheda
const float tensioneDiRiferimento = 5.0;

// batteria connessa al pin analogico 0
const byte pinBatteria = A0;

void setup() {
  // inizializzazione della porta seriale
  Serial.begin(9600);
}

void loop() {
  // legge il valore della batteria e lo trasforma
  // in un valore numerico tra 0 e 1023
  int valoreLetto = analogRead(pinBatteria);

  // calcolo della proporzione
  // volt:tensioneDiRiferimento = valoreLetto:1023.0
  // da cui si ricava la formula che segue
  float volt = (valoreLetto/1023.0) * tensioneDiRiferimento;

  // stampa sulla Serial Monitor la tensione misurata
  Serial.println(volt);
}

Per evitare spreco di memoria dovuto ai calcoli che utilizzano i tipi di dati float che occupano maggiore memoria, è possibile utilizzare al posto del tipo float il tipo long, ovvero un int lungo rappresentato da 4 byte in grado di rappresentare numeri interi tra –2147483648 a 2147483647.

Vediamo come modificare lo sketch precedente per rilevare tensioni espresse in millivolt in cui però si utilizzano variabili intere di tipo long:

// Prof. Maffucci Michele
// Esempio 02: Misura di tensioni continue non superiori a 5V
// utilizzando variabili di tipo float
// Data: 01.10.2021

// batteria connessa al pin analogico 0
const byte pinBatteria = A0;

void setup() {
  // inizializzazione della porta seriale
  Serial.begin(9600);
}

void loop() {
  // legge il valore della batteria e lo trasforma
  // in un valore numerico tra 0 e 1023
  // valoreLetto è di tipo long
  long valoreLetto = analogRead(pinBatteria);

  // stampa sulla Serial Monitor la tensione misurata
  // in millivolt

  Serial.println((valoreLetto*(500000/1023L))/100);
}

Quindi per evitare di effettuare calcoli con numeri di tipo float (in virgola mobile) senza perdere precisione, il trucco consiste nell’operare sui valori in millivolt invece che  sui valori in volt. Ricordo che 1 volt corrisponde a 1000 millivolt.

Come detto all’inizio di questa lezione sappiamo che un valore numerico di 1023 restituito dall’analogRead, corrisponde al valore massimo di 5000 millivolt, allora ogni unità rappresenta 5000/1023 millivolt, che corrisponde a 4,89 millivolt. Come detto nell’esempio precedente, la stampa su Serial Monitor di un numero in virgola mobile mostrerà al massimo due decimali, pertanto l’eliminazione dei decimali nel secondo esempio possiamo farlo moltiplicando per 100, nel codice: 5000×100=500000, questo valore verrà poi moltiplicato per il rapporto tra il valore letto e 1023 ed il tutto ancora diviso per 100, così facendo otterremo il valore in millivolt. Questo calcolo permette di far effettuare al compilatore solamente calcoli tra interi e non tra float, rendendo quindi la computazione più veloce e riducendo la quantità di memoria utilizzata.

Si noti che al fondo del numero 1023 è stata aggiuta una L, cioè 1023L, che indicare al compilatore che il numero rappresentato è di tipo long (4 byte).

Esercizi per i miei studenti

Esercizio 1
Utilizzare un Trimmer per regolare la tensione in ingresso ad A0 tra 0 e 5V, in questo caso si prenda la tensione di 5V dal pin di Arduino.

Esercizio 2
Nel primo sketch proposto utilizzare la funzione map per convertire il valore restituito dall’ analogRead in un valore di tensione. In questo caso nascono dei problemi sulla precisione della misura, sapresti indicarmi quali?

Esercizio 3
Visualizzare il valore di tensione regolato dal Trimmer sul Plotter Seriale.

Esercizio 4
Utilizzando uno qualsiasi dei due sketch indicati sopra e visualizzare la tensione misurate sul un display 16×2

Esercizio 5
Aggiungere all’esercizio precedente l’indicazione di carica data da un grafico costituito da 5 quadrati che ne indicano il livello di carica, non appena il livello di carica raggiunge 1 volt il quadrettino inizia a lampeggiare.

Buon Making a tutti 🙂

Arduino: stampare più funzioni sulla serial plotter

L’attività di progetto di questa mattina: progettazione di dispositivi elettronici che rispondono a diverse necessità per la salute umana: cura della persona, disabilità, sicurezza sul lavoro, strumenti medici/laboratorio, accessibilità dei luoghi pubblici, ecc…

Con mio piacere ne è nata un’intensa attività di ricerca che ha coinvolto l’intero gruppo classe. Molte le necessità e tra queste ne evidenzio uno, semplice, che riguarda la programmazione, che in più occasioni gli studenti affrontano durante le sperimentazioni e di cui mi sono reso conto di non avere documentato adeguatamente, ovvero: il plot di più funzioni su uno stesso piano cartesiano con Arduino.

Avevo mostrato in più occasioni come effettuare il plot di grandezze variabili nel tempo utilizzando la Serial Plotter dell’IDE di Arduino, uno degli ultimi articoli si riferisce alla realizzazione di uno strumento per la rilevazione di vibrazioni, un semplice sismografo realizzato con un sensore piezoelettrico.

Alcuni studenti questa mattina, si stavano cimentando nella progettazione di un guanto da utilizzare per la movimentazione di un braccio robot industriale della hyundai con l’obiettivo di simulare la movimentazione a distanza di sostanze chimiche pericolose. Nelle prime attività di ricerca si è manifestata la necessità di visualizzare su tre grafici diversi le componenti X, Y, Z dell’accelerazione fornite da un accelerometro connesso ad Arduino.

Come sicuramente saprete l’avvio della Serial Plotter avviene, così come per la Serial Monitor dal menù Tools. Ricordo che Serial Monitor e Serial Plotter non possono essere avviate contemporaneamente.

La Serial Plotter prende i valori che giungono dalla seriale (connessione USB) e li grafica su un piano cartesiano. I dati numerici vengono anche visualizzati nella parte in alto a sinistra della finestra della Serial Plotter.

I valori massimi e minimi rappresentati sull’asse Y vengono regolati automaticamente, mentre la dimensione dell’asse X è fissato a 500 punti e l’aggiornamento del grafico avviene ogni qual volta nel vostro sketch viene eseguita una Serial.println().

Ricordate inoltre di fissare il Baud Rate del Serial Plotter in modo che corrisponda a quello che avete indicato nel codice.

Per tracciare contemporaneamente forme d’onda è possibile agire in due modi:

inserendo uno spazio tra due istruzioni di stampa

Serial.print(temperatura);
Serial.print(" ");
Serial.println(umidita);

oppure inserendo una tabulazione tra due istruzioni di stampa

Serial.print(temperatura);
Serial.print("\t");
Serial.println(umidita);

In questo caso le due grandezze, temperatura e umidità, saranno rappresentate da due funzioni separate e tracciate contemporaneamente sullo stesso piano cartesiano.

A titolo di esempio consideriamo il mio post in cui mostravo come utilizzare un DHT11 e visualizzeremo sulla Serial Plotter le due grandezze fisiche temperatura ed umidità. Di seguito schema di collegamento, sketch e grafici.

// Prof. Maffucci Michele
// Visualizzazione della pressione e dell'umidità rilevata da un DHT11
// sulla Serial Plotter
// 16.09.2021

// Libreria DHT
#include "DHT.h"

// Pin digitale di arduino connesso al DHT
#define DHTPIN 2

// tipo del sensore: DHT 11
#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

void setup() {
  Serial.begin(9600);
  dht.begin();
}

void loop() {
  // Attesa di 1 millisecondo prima di fornire la misura.
  delay(1);

  // Lettura dell'umidità
  float h = dht.readHumidity();
  // Lettura della temperatura in gradi Celsius
  float t = dht.readTemperature();

  // Verifica se le si presenta un errore di lettura (e riprova nuovamente)
  if (isnan(h) || isnan(t)) {
    Serial.println(F("Impossibile leggere dal sensore DHT!"));
    return;
  }

  // Stampa del valore dell'umidità
  Serial.print(h);
  Serial.print(' ');
  // Stampa del valore della temperatura
  Serial.println(t);
}

Il plot delle due grandezze è:

Per completezza realizziamo un semplice sketch che permette di rappresentare 3 funzioni sinusoidali sfasate di 90 gradi una rispetto all’altra con ampiezze diverse:

// Prof. Maffucci Michele
// Visualizzazione di tre funzioni siusoidali
// di ampiezza diversa e sfasate di 90 gradi
// 16.09.2021

void setup() {
  Serial.begin(9600);
}

void loop() {

  // M_PI è la macro definita nell'header math.h
  // che definisce il pi greco che ha il valore di:
  // 3.14159265358979323846
  for(int i = 0; i < 360; i += 2) {
    float ValoreY1 = 1 * sin(i * M_PI / 180);
    float ValoreY2 = 2 * sin((i + 90)* M_PI / 180);
    float ValoreY3 = 4 * sin((i + 180)* M_PI / 180);

    Serial.print(ValoreY1);
    Serial.print(' ');         // deve essere stampato spazio ' ' o  tab '\t' tra due valori.
    Serial.print(ValoreY2);
    Serial.print(' ');         // deve essere stampato spazio ' ' o  tab '\t' tra due valori.
    Serial.println(ValoreY3);  // l'ultimo valore deve avere un ritorno a capo

    delay(1);
  }
}

Buon Coding a tutti 🙂

Programmare Raspberry Pi Pico con l’IDE di Arduino

Nel mio precedente post introduttivo sull’uso di Raspberry Pi Pico abbiamo iniziato a conoscere la scheda ed avevo mostrato come programmarla in MicroPython.
Vediamo in questo post come programmare la scheda con l’IDE di Arduino.
Ovviamente prima di iniziare è necessario installare l’IDE di Arduino.

Installare il pacchetto Raspberry pico nell’IDE di Arduino

E’ possibile procedere in due modi, seguendo l’installazione del pacchetto non ufficiale, oppure quello ufficiale di Arduino. Vedremo entrambe le installazioni.

Installazione del pacchetto non ufficiale

Il pacchetto non ufficiale è quello che preferisco perché ad oggi è quello che fornisce più opzioni di programmazione e gestioni di schede di diverso tipo con il medesimo microcontrollore RP2040.

1. Aprire l’Arduino IDE. Andate in File > Preferences

2. Copiare ed incollate il seguente link nel Gestore Schede

https://github.com/earlephilhower/arduino-pico/releases/download/global/package_rp2040_index.json

Click su ok per salvare le impostazioni

3. Aprire il Gestore schede. Andate in Strumenti > Scheda > Gestore schede. Si aprirà la finestra Gestore schede in questo modo verranno caricati i contenuti aggiunti con il link inserito al passo 2.

4. Cercare tramite il campo di ricerca “Pi Pico”. Troverete: “Raspberry Pi Pico/RP2040 by Earle F. Philhower”, selezionate l’ultima versione e fate clic su “Installa”

5. L’installazione del pacchetto non ufficiale è terminata, vedrete la voce: INSTALLED di fianco al nome del pacchetto.

Continua a leggere

Arduino: misuratore di distrazione dovute all’uso di uno smartphone

Uno dei progetti che ho assegnato ai miei studenti in questo anno scolastico che volge al termine, è stato quello di progettare e realizzare un sistema di automazione in grado di valutare il comportamento sedentario di una persona quando lavora a computer. Al sistema sono stati aggiunti  appositi segnali di allarme che hanno l’obiettivo di invogliare la persona ad effettuare esercizio fisico.
Gli allievi hanno progettare il dispositivo non solo da un punto di vista elettronico, ma anche dal punto di vista dell’usabilità e del design.
I progetti realizzati hanno avuto sviluppi molto interessanti, nelle foto in allegato trovare una versione addirittura dotata di caricatore per smartphone dotato inoltre di un doppio controllo: presenza persona (mediante sensore PIR) e rilevazione prelievo smartphone mediante sensore LDR. Come accade spesso i migliori progetti sviluppati durante il PCTO vengono utilizzati per sviluppare le future attività di laboratorio per l’anno scolastico successivo.

Una variante all’attività sopra segnalata è un misuratore di distrazione, l’idea nasce da una serie di necessità:

1. far percepire fisicamente la quantità di interruzioni e quindi distrazioni durante un’attività di studio dovute alle continue notifiche ricevute sugli smartphone;
2. usare concetti elettronici ed informatici non estremamente complessi ed adatti a chi inizia ad utilizzare un microcontrollore;
3. far si che nell’attività di laboratorio sia presente una componente di educazione civica.

Da ciò è nato il “misuratore di distrazioni” che proporrò per la realizzazione ad un gruppo di colleghi che stanno seguendo il mio corso: Le buone pratiche del Making e dell’Internet delle Cose (IOT avanzato) organizzato dal Liceo da Vinci – Floridia (SR), sarà il progetto della settimana.

Il sistema sarà dotato di pochi componenti:

  • Arduino
  • Ldr
  • Display 16×2
  • Pulsante

Il tutto si presenta come una semplice scatola su cui può essere poggiato il telefono, un LDR posto sulla base di appoggio rileverà la variazione di luce quando si solleva lo smartphone. Il display indicherà il numero di volte che il telefono è stato preso e quindi il numero di volte che la persona ha interrotto il suo lavoro o studio. Le distrazioni potranno essere ridotte inserendo un coperchio che nasconde il display dello smartphone.

Ovviamente si potrà migliorare il sistema, ad esempio mostrando la quantità di minuti trascorsi dall’ultima distrazione, o ancora il numero di minuti totali si distrazione, il progetto potrà essere migliorata a piacimento. Poiché durante il corso dovrò parlare anche di IoT si aggiungerà la possibilità di invio messaggi di avvertimento via Telegram nel caso si raggiunga un limite fissato di distrazioni.

Per rendere la costruzione del dispositivo semplice e veloce ho utilizzato del foam core in modo che non ci sia l’obbligo di utilizzo di una stampante 3D o di una macchina a taglio laser per la realizzazione dell’oggetto.

Rendo quindi disponibile i sorgenti grafici in formato svg per stampare su foglio di carta adesiva le parti della scatola. I fogli adesivi verranno poi incollati sui pannelli foam ed ogni parte sarà tagliata a mano con un cutter e successivamente incollati con colla vinilica.

Buon making a tutti 🙂