Archivi tag: servomotori

Domande dagli utenti: “puoi chiarire il concetto di negativo in comune?”

Continuo con la serie delle domande che mi sono giunte sul gruppo Facebook BBC micro:bit Italy, questa volta dall’amico: Davide

ciao Michele Maffucci, uno degli altri “problemi” che ho notato che non capiscono, quando alimenti separatamente, il “negativo in comune”
Magari un giorno affronta l’argomento 🙂

Quando si alimenta separatamente (micro:bit o Arduino da una fonte e motori/driver da un’altra), molti si bloccano sul concetto di “negativo in comune”. Un modo semplice per capirlo è l’esempio dell’ascensore che spesso faccio durante le mie lezioni.

Immagina due persone che vogliono incontrarsi in un edificio:

  • la prima usa come riferimento il piano terra e dice: “sono al 2° piano”;
  • la seconda, però, considera “piano terra” il 1° piano (ha spostato lo zero): anche lei dice “sono al 2° piano”, ma in realtà si trova su un livello diverso.

Risultato: usano numeri uguali, ma riferiti a zeri diversi, quindi non riescono a coordinarsi e incontrarsi.

In elettronica succede la stessa cosa: un segnale “alto” (ad esempio 3,3 V) significa 3,3 V rispetto a un riferimento, cioè rispetto alla massa (GND). Se micro:bit e driver/servo non condividono la stessa massa, quel “3,3 V” può non essere interpretato correttamente perché lo “zero” dell’uno non coincide con lo “zero” dell’altro.

Nota importante: massa e terra non sono la stessa cosa (anche se a volte coincidono)

  • Massa / GND (0 V di riferimento): è il potenziale comune di riferimento del circuito, spesso chiamato anche 0 V. È il “piano terra” della nostra analogia: lo zero rispetto a cui misuriamo e capiamo i segnali.
  • Terra / PE (Protective Earth – protezione): è il collegamento all’impianto di terra, usato soprattutto per sicurezza elettrica (scariche, guasti, schermature).

In molti dispositivi alimentati da rete, la massa del circuito può essere collegata alla terra, e in quel caso massa e terra finiscono per trovarsi allo stesso potenziale e spesso si parla di “0 V”.

In sistemi a batteria (micro:bit, driver, servo, pacchi AA/AAA) come ad esempio i nostri robot didattici, non esiste una “terra” fisica collegata all’impianto: esiste solo la massa come riferimento comune.

Quindi, quando diciamo “mettere il negativo in comune”, intendiamo:

“Rendere comune il riferimento (GND) tra i dispositivi che devono scambiarsi segnali.”

in altro modo:

GND micro:bit < - > GND driver/servo < - > GND batteria motori

In breve: potete tenere alimentazioni separate, ma dovete rendere comune il riferimento (GND), altrimenti i segnali non hanno un “piano zero” condiviso e il controllo diventa instabile.

Schema pratico

GND micro:bit ─────────┐
GND driver/motor board ├──> punto massa comune
GND batteria motori ───┘

Il concetto è: micro:bit invia il segnale, il driver lo interpreta, ma entrambi devono riferirsi allo stesso “0 V”.

Schema di collegamento – casi tipici

A. micro:bit + driver motori DC (ponte H / Motor driver)

  • Batteria motori + (positivo) > Vmot / +VIN driver
  • Batteria motori (negativo) > GND driver
  • micro:bit pin (PWM/direzione) > IN1/IN2/ENA… (driver)
  • micro:bit GND > GND driver (fondamentale)

IMPORTANTE: non serve collegare i “positivi” tra loro; serve collegare i GND.

B. micro:bit + servo (alimentazione servo separata)

  • Batteria servo + (positivo) > V+ servo
  • Batteria servo (negativo) > GND servo
  • micro:bit pin segnale > SIG servo
  • micro:bit GND > GND servo

Senza GND in comune il servo può tremare, non rispondere o muoversi in modo erratico.

C. micro:bit alimentata e motori sullo stesso pacco batterie (solo se il pacco è adeguato)

  • Stesso pacco batterie > micro:bit (tramite regolazione corretta) + driver;
  • GND è già comune per costruzione;
  • è pratico, ma attenzione ai disturbi: spesso conviene comunque separare la potenza motori.

Accorgimenti costruttivi utili

  • collegare “a stella” le masse, ovvero un punto comune su cui colleghiamo tutte le masse vicino al driver/alimentazione motori, evitare se possibile collegamenti di masse in cascata;
  • mantenere i cavi motore e quelli di segnale separati quando possibile;
  • aggiungere condensatori di disaccoppiamento vicino al driver/servi (se il kit non li integra già).

Per approfondimenti consiglio la lettura del post: Sensori e attuatori lontani da Arduino: guida pratica al cablaggio corretto i consigli che vengono forniti possono essere adottati anche per la costruzione dei nostri robot didattici.

Questi concetti verranno approfonditi in modo pratico durante il mio prossimo corso di robotica.

Buon Making a tutti.

Domande dagli utenti: perché micro:bit non pilota i motori direttamente?


Nella giornata di ieri mi è arrivata una domanda molto sensata, una di quelle che prima o poi ci si pone tutti quando si prova a far muovere un robot con micro:bit o con Arduino.

“Se micro:bit riuscisse a passare da 3V a 5V si risparmierebbero i costi della scheda di espansione, nonché l’ottimizzazione degli spazi. Lei è d’accordo? Chissà perché non lo fanno: ormai tutti abbiamo bisogno di motorini.”

La risposta breve è questa:

Capisco il ragionamento, ma il vero ostacolo non è 3 V vs 5 V. Il punto è che un pin di micro:bit non è uno stadio di potenza.
Anche se la scheda fosse “a 5 V”, non potresti comunque collegare un motore direttamente ai pin in modo sicuro e affidabile.

Vediamo perché, con esempi concreti e riferimenti ai due kit che uso spesso nei corsi: Ring:bit V2 board e Kitronik :MOVE mini.

La spiegazione che segue è volutamente semplificata in quanto non necessariamente i colleghi che seguono i miei corsi sono docenti di materie di indirizzo tecnico.

Perché “alzare la tensione” non risolve il problema

Corrente: il motore chiede molta più energia di quella che un pin può dare

Un motore (anche piccolo) non “vuole solo tensione”: vuole soprattutto corrente, e ne vuole parecchia quando parte (corrente di spunto) e quando è sotto sforzo (ruote che spingono, attrito, urti).

Un pin GPIO di una scheda a microcontrollore è progettato per segnali e piccoli carichi, non per alimentare carichi elettromeccanici. Se provate a farlo, i sintomi tipici sono:

  • reset improvvisi della scheda,
  • comportamenti instabili,
  • surriscaldamento,
  • nel peggiore dei casi danni ai pin o al microcontrollore.

Disturbi e picchi: il motore “sporca” l’alimentazione e genera back-EMF

Il motore è un carico induttivo: quando viene acceso/spento o se ne cambia la velocità, può generare picchi di tensione (back-EMF) e disturbi elettrici che:

  • mandano in crisi la logica,
  • creano interferenze (anche sulla radio/BT),
  • degradano l’affidabilità nel tempo.

Serve un driver: lo “stadio di potenza” che separa logica e motore.

Per pilotare un motore DC, ad esempio quelli gialli che tipicamente vengono usati nei progetti didattici di robotica, serve uno stadio di potenza, cioè un driver motore, per esempio:

  • ponte H (per andare avanti/indietro e fare PWM in modo robusto),
  • oppure MOSFET + protezioni (se serve solo on/off o un verso).

Il driver fa tre cose fondamentali:

  • regge la corrente (anche i picchi),
  • gestisce la direzione e la velocità (PWM),
  • protegge micro:bit dai disturbi e dai picchi del motore.

Citando la richiesta dell’utente: “Ma allora perché micro:bit non è a 5V?”

In realtà molte schede “vivono” già in ambienti dove esistono 5 V (ad esempio USB), ma l’elettronica interna e i pin di I/O lavorano a bassa tensione (tipicamente 3,3 V) perché:

  • si riducono consumi e riscaldamento,
  • si protegge meglio la scheda,
  • si mantiene compatibilità con sensori moderni a bassa tensione,
  • e soprattutto (punto chiave): anche a 5 V i pin non diventerebbero “pilotamotori”.

Quindi: passare a 5 V non eliminerebbe la necessità di un driver. Cambierebbe solo alcuni dettagli di alimentazione/compatibilità, ma non la sostanza.

Il caso reale nei kit: Ring:bit V2 board e Kitronik :MOVE mini

Ring:bit V2 board: non è “la scheda che pilota motori”

La Ring:bit V2 board è principalmente una scheda di espansione/breakout:

  • rende più comodi alcuni collegamenti (ad esempio porte tipo GVS su P0/P1/P2),
  • integra un portabatterie (3×AAA) per alimentare il sistema/il robot,
  • fornisce un’interfaccia pratica per prototipare.

Va interpretata come interfaccia e distribuzione di alimentazione/connessioni, non come “micro:bit che pilota motori direttamente”.

Ring:bit V2

Kitronik :MOVE mini: usa servomotori, non motori DC senza elettronica di controllo integrata

La scheda Kitronik :MOVE mini può controllare due servomotori a rotazione continua. Questa scelta è utile per la didattica, perché un servo:

  • contiene già la propria elettronica di pilotaggio,
  • si controlla con un semplice segnale PWM (impulsi “stile servo”),
  • prende l’energia dal pacco batterie/board del kit, non dai pin di micro:bit.

In pratica:

  • micro:bit invia il comando (PWM),
  • il servo esegue, usando la sua alimentazione dedicata.

Questo è il motivo per cui, con :MOVE mini, si riesce ad avere un robot “semplice” e robusto senza introdurre subito il tema dei ponti H per motori DC.

:MOVE mini

Cosa vedremo nel corso: motori DC “veri” e driver dedicati

Durante il corso mostrerò anche l’altro scenario, quello tipico quando si usano i classici motori gialli da 6 V (motori DC con riduttore), dove il driver è obbligatorio.

motore TT

Lavoreremo in particolare con:

  • L298N (ottimo per capire il concetto di ponte H e cablaggi, anche se non è la soluzione più efficiente in assoluto),
  • Motor:bit di ELECFREAKS (più compatta e didattica, comoda per micro:bit).

Obiettivo: far capire chiaramente la differenza tra:

  • “motore DC” (serve driver + alimentazione adeguata),
  • “servo” (driver interno, controllo PWM più diretto).

Regola utile sempre: alimentazione separata e masse in comune

Quando si entra nel mondo motori/attuatori, una buona pratica è:

  • alimentare i motori/servi con una linea robusta (batterie/pack dedicato),
  • e mantenere massa (GND) in comune tra microcontrollore e driver/attuatori (quando richiesto), così i segnali di controllo hanno un riferimento corretto.

Questa singola regola elimina moltissimi “misteri” (reset, comportamenti casuali, servo che impazziscono).

Qualche precisazione in più sui motori DC o motori senza elettronica di controllo integrata

Troverete spesso la dicitura motori bare DC motor in pratica sono motori che hanno solo due terminali (o due fili):

  • fornite tensione > girano
  • togliete tensione > si fermano
  • invertite la polarità > invertono il verso di rotazione (se lo permettete elettricamente)

In ambito tecnico anglofono è abbastanza comune parlare di “bare DC motor” per indicare un motore senza elettronica di controllo integrata (cioè “il solo motore”, tipicamente a due fili) e spesso anche senza riduttore/struttura accessoria.

Esempi tipici:

  • i classici motori gialli TT 3–6 V usati nei robot economici
  • motorini DC “a spazzole” da modellismo o recuperati da giocattoli

I bare DC motor non hanno al loro interno:

  • driver di potenza
  • protezioni contro i picchi (back-EMF)
  • logica per interpretare un segnale di controllo

Quindi, per farli funzionare con micro:bit, serve aggiungere elettronica esterna:

  • un ponte H (es. L298N, TB6612, DRV8833) se vuoi avanti/indietro + PWM
  • oppure un MOSFET + diodo se ti basta on/off (e magari un solo verso)

L298N

TB6612

DRV8833

Differenza con un servo (o un motoriduttore “intelligente”)

Un servomotore (anche a rotazione continua) invece non è senza elettronica di controllo perché contiene già:

  • elettronica di pilotaggio
  • circuito di potenza
  • logica che interpreta il comando (impulsi PWM stile servo)

Per questo il micro:bit può “comandare” un servo con un semplice segnale, mentre con un motore DC senza elettronica di controllo deve essere gestito da un driver.

Buon Making a tutti 🙂

Micro storie di attività di making scolastico

Il setting sul banco di lavoro è importante.

Spieghi come usare un qualsiasi componente elettronico, ma se questo è collocato al di fuori della breadboard comincia il disordine, quindi “pensa che ti ripensa” e nasce l’idea di qualcosa di molto più pratico, trasportabile adattabile ad ogni tipo di sperimentazione, ma che non posso realizzare in poco tempo… più avanti (un paio di settimane) ne condividerò il progetto che ho in testa.

Ho bisogno che venga risolto un piccolissimo problema per giovedì prossimo: evitare che i servomotori si rompano o si perdano durante le sperimentazioni in laboratorio.

Passo 1
5 minuti per trovare un supporto per micro servomotori su Thingiverse, metti in stampa durante il primo intervallo e disegni con illustrator delle basette su cui collocare il servo, (un rettangolo e 4 cerchi ed una L 🙂 )

Passo 2
Durante il secondo intervallo corri al Lab Territoriale per tagliare a laser il compensato su cui fissare i servomotori

Passo 3
Domani durante l’ultima ora della mattinata, quando il calo glicemico degli allievi è tale per cui risulta difficile ragionare, chiedi di assemblare il tutto.

Piccole cose che rendono la vita didattica un pochino più ordinata.

Grazie Pinin 🙂

Poiché mi è stato chiesto via mail, condivido link dei file.