Home Assistant a scuola: la guida “a puntate” per elettronica & automazione – 01

Questa guida nasce con un obiettivo doppio: replicare in contesti diversi ciò che ho già sperimentato sul campo, a partire da casa mia e trasformare Home Assistant in una palestra didattica concreta per la scuola (ITIS). Il progetto è necessariamente diluito nel tempo: il mio lavoro quotidiano in classe è intenso e scrivere “un po’ alla volta” mi consente di essere più costante e produttivo. Nei prossimi mesi la guida sarà utilizzata integralmente dai miei studenti, quindi per me è anche un modo per strutturare meglio i materiali e organizzare le attività di laboratorio in modo progressivo e replicabile.

Come sempre trovate su queste pagine una sintesi, di un percorso più esteso ed approfondito che verrà svolto in presenza a scuola.

Nota sull’origine dei contenuti

Questa guida nasce dalla traduzione in italiano del manuale di installazione ufficiale di Home Assistant e da miei appunti, il tutto riadattata in alcune parti per un uso didattico a scuola (ITIS), con esempi, lessico semplificato e procedure più guidate pensate per docenti e studenti.

Perché Home Assistant a scuola

La guida nasce per supportare docenti e studenti del percorso di Elettronica ed Automazione dell’ITIS con attività concrete di laboratorio: prototipi, sensori, attuatori, automazioni e dashboard. Farò usare Home Assistant come una vera palestra di allenamento per orchestrare dispositivi e servizi, simulare scenari della vita scolastica (aule, laboratori, LTO), raccogliere dati e creare procedure automatizzate utili alla didattica e all’organizzazione quotidiana.

Vogliamo documentare e standardizzare il lavoro del Laboratorio Territoriale per l’Occupabilità (LTO) e offrire una traccia replicabile: setup chiari, materiali riutilizzabili, esercizi graduali. La guida mostrerà come trasformare Home Assistant in un ambiente di sperimentazione che unisce elettronica, informatica, reti e buone pratiche di gestione del laboratorio, con un  percorso pensato per essere seguita passo passo sia in aula sia a casa.

Cos’è Home Assistant

Home Assistant è una piattaforma open-source per l’automazione e il controllo di dispositivi e servizi, pensata per funzionare in locale (privacy e affidabilità) e per integrare centinaia di tecnologie diverse in un’unica interfaccia e motore di automazioni. È supportata da una grande comunità e offre installazioni pronte per Raspberry Pi e altri sistemi, con gestione semplificata di add-on, backup e aggiornamenti.

La variante Home Assistant OS è un sistema operativo dedicato che rende l’installazione “apri e usa” su single-board computer e x86-64, riducendo la manutenzione e facilitando la gestione del laboratorio (snapshot, add-on, supervisione centrale).

Dal punto di vista storico e tecnologico, il progetto nasce nel 2013 ed è oggi sviluppato dalla Open Home Foundation e da una community globale; backend in Python, frontend web, migliaia di integrazioni e un focus costante su controllo locale e sicurezza.

Tradotto in pratica per l’ITIS: un “collante” che ci permette di collegare sensori/attuatori reali, creare dashboard per il laboratorio, costruire automazioni verificabili (trigger-condizioni-azioni) e fare misure e report utili alla valutazione delle attività.

A chi è rivolta la guida

Docenti di elettronica e sistemi che cercano esempi pronti (step-by-step) e materiali riutilizzabili.
Studenti di elettronica/automazione che vogliono vedere subito sensori e attuatori integrati in un flusso “dati > logica > azione”.
LTO / FabLab didattici che vogliono un’impostazione replicabile, con criteri di sicurezza, versioning dei file e checklist operative.

Cosa faremo (indice “a puntate” in fase di realizzazione)

  • Preparazione – Scelte hardware, HAOS vs altre installazioni, criteri di rete in laboratorio.
  • Installazione su Raspberry Pi – Flash, primo avvio, onboarding, snapshot.
  • Interfaccia & Add-on essenziali – File Editor, Samba/backup, MQTT, ESPHome (panoramica).
  • Prime automazioni – Trigger, condizioni, azioni, blueprint; notifiche e scene.
  • Dashboard di laboratorio – Card base, layout per postazioni, pannello docente.
  • Sensori & Attuatori reali – MQTT ed ESPHome con esempi di misura e pilotaggio.
  • Energy & Presence (opzionale) – Raccolta dati e visualizzazione didattica.
  • Sicurezza & manutenzione – Account, backup, ripristino, troubleshooting “da classe”.

Licenze, privacy e sostenibilità didattica

La natura open-source e il controllo locale permettono di usare Home Assistant anche senza dipendere dal cloud: un vantaggio in termini di privacy, latency e continuità delle esercitazioni in laboratorio. Le integrazioni coprono protocolli e prodotti eterogenei, così da valorizzare strumentazione già presente a scuola e ridurre i costi iniziali.

Esempi di attività “vicine alla vita scolastica”

Ho organizzato le idee in categorie di attività: non saranno tutte realizzate, ma saranno utilizzate come base di discussione con gli studenti per valutarne la fattibilità e scegliere cosa sviluppare in gruppi di progetto (ad esempio in attività di PCTO). L’obiettivo è ragionare su come trasformare un’idea in un prototipo concreto, definendo priorità, vincoli e impatto didattico.

Come farò valutare dagli studenti le proposte (idee anche questa in fase di sviluppo):

  • Fattibilità tecnica: sensori/attuatori disponibili, integrazione con Home Assistant, complessità di sviluppo.
  • Impatto didattico: competenze coinvolte (elettronica, reti, coding, dati), utilità per la vita scolastica.
  • Costi e tempi: componenti necessari, budget, pianificazione a sprint.
  • Sicurezza & privacy: uso in ambiente scolastico, conformità e minimizzazione dei dati.
  • Manutenibilità & scalabilità: riuso dei moduli, documentazione, possibilità di estendere il progetto.
  • Inclusione & accessibilità: benefici per studenti con bisogni educativi speciali.

Ambiente e qualità dell’aria

  • Polveri sottili nel cortile (PM2.5/PM10): sensore (es. PMS5003/SDS011) su ESP32; dashboard con trend orari/giornalieri; automation: se PM supera soglia > notifica a docenti/ATA e cartello “ridurre attività all’aperto”.
  • Stazione meteo didattica: temperatura/UR, pioggia, vento, radiazione; correlare meteo con assenze in palestra/uscite didattiche.
  • Rumore nei corridoi/aula: microfono analogico per livello sonoro; semaforo visivo in classe per autoregolazione.

Sicurezza e accessi

  • Sistemi anti-intrusione: PIR, contatti magnetici su porte/finestre, vibrazione su vetrate; se rilevato movimento fuori orario > sirena/luce + notifica con snapshot ESP32-CAM.
  • Uscite di emergenza: sensori stato porta + test programmati; se porta ostruita/aperta fuori norma > alert a DSGA/collaboratori.
  • Armadi strumentazione: NFC/contatti per apertura; log prelievi/restituzioni per responsabilità e inventario.

Energia e edificio

  • Analisi consumo energetico: smart plug (banchi prova, stampanti 3D, forni reflow), pinza amperometrica/Modbus su quadri; automation: spegnimento notturno/standby; report settimanale per classe/spazio.
  • Bilancio termico/dispersioni: sonde T°/UR in e out (aule, corridoi, esterno) + porta/finestra aperta; se ΔT anomalo o finestra aperta con riscaldamento ON > notifica; log per stimare dispersioni e comportamenti.
  • Monitor fotovoltaico: produzione vs consumi scuola; suggerimento fasce orarie per carichi energivori (laboratorio macchine, stampa 3D).

Laboratori e didattica operativa

  • Banchi prova “occupazione & ticket”: pulsante “richiesta aiuto”, stato banco (OK/KO), coda assistenza sul monitor docente.
  • Gestione stampanti 3D: sensori temperatura/hotend, consumo, fine-filamento; avviso fine stampa e spegnimento automatico.
  • Magazzino componenti: bilance/pesi o contatori ottici su cassettini “critici”; scorte minime > lista acquisti automatica.

Vita quotidiana d’istituto

  • Bacheca digitale: dashboard con eventi del giorno, aule occupate, avvisi ATA; aggiornamento da Google Calendar/Sheets.
  • Clima “comfort apprendimento”: indice combinato (T°, UR, CO₂, rumore, illuminamento) per aula; suggerimenti operativi (arieggiare, abbassare tapparelle, ecc.).

Inclusione e benessere

  • Semaforo acustico-visivo per studenti sensibili al rumore: se superata soglia > luce soft + promemoria “voce bassa”.
  • Promemoria routine (PAI/PEI): notifiche discrete su tablet del docente (pause attive, cambio attività, idratazione).

Manutenzione e asset

  • Ciclo manutenzione attrezzature: ore di utilizzo macchine/pompe/saldatori; scadenze manutentive.
  • Perdite d’acqua (bagni/lab): sensori acqua; chiusura elettrovalvola + avviso bidello.

Come seguire la serie

Pubblicherò gli episodi con cadenza “abbastanza” regolare sul sito. Ogni articolo sarà una porzione del tutorial generale e conterrà file di supporto, checklist e dove necessario schede attività. Se volete ricevere gli aggiornamenti, iscriviti a questo sito o segui i miei canali social.

Non mi resta che dirvi: Buon Making a tutti 🙂

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito utilizza Akismet per ridurre lo spam. Scopri come vengono elaborati i dati derivati dai commenti.