Archivi tag: making

5 min da maker: pannello modulare SKÅDIS per prototipi elettronici

Manteniamo in ordine i nostri progetti.

  • Tempo di realizzazione: ≈ 90 min (stampa 3D esclusa)
  • Skill richieste: modellazione di base, slicing FDM, taglio laser, assemblaggio elettronico
  • Obiettivo: ottenere un pannello ordinato e modulare dove fissare in un attimo Arduino, Raspberry Pi, breadboard, alimentazione, accessori di misura, strumenti da lavoro.

Ingredienti (“stampa & taglia”)

Piedini + ganci SKÅDIS
File STL “IKEA SKADAS Desktop Stand” di HX8

Supporti Raspberry Pi 1‑5
File STL “Support Raspberry Pi 1 to 5”

Supporti Arduino
SKADIS Support ARDUINO Uno R4 MINIMA / WIFI

Pannello SKÅDIS personalizzato (4 mm multistrato) – mia versione
SVG generato da boxes.py

Variante XL
Pannello SKÅDIS IKEA originale 76×56 cm

Per la realizzazione sono necessari:

  • Stampante 3D FDM
  • Laser CO₂ / diode ≥ 40 W per taglio multistrato 4 mm (o servizio esterno).

Il pannello SKÅDIS può essere stampato in 3D di dimensioni variabili che possono essere agganciati tra loro.

Perché costruirlo questi pannelli per le sperimentazioni didattiche

Durante le lezioni di elettronica applicata mi trovo spesso a dover passare, nella stessa mattina da un semplice circuito realizzato con Arduino ad un sistema di automazione gestito da PLC, oppure alla realizzazione di un’esercitazione di demotica svolta su pannelli su cui è riposta la planimetria di un’abitazione su cui gli studenti cablano sensori ed attuatori. 

Un pannello modulare SKÅDIS risolve quattro problemi in un colpo solo:

  1. Ordine operativo – ogni circuito trova il suo posto: MCU, shield, breadboard e linee di alimentazione sono ancorati, non “ballano” sul banco, e i cavi di misura restano liberi da grovigli.
  2. Visualizzazione del complessivo – fissando al legno la stampa di una pianta dell’abitazione, gli allievi hanno sotto gli occhi una mappa in cui inserire tutti i dispositivi, ciò rende più chiara la distribuzione dell’I/O e logica di cablaggio.
  3. Portabilità – in pochi secondi il pannello diventa una valigetta di prototipazione che può diventare una piccola stazione meteorologica o un sistema per la rilevazione di micropolveri da collocare all’esterno della scuola oppure portare ad una fiera.
  4. Ecosistema open‑source infinito – online esistono migliaia di modelli gratuiti compatibili SKÅDIS (strumenti, bobine per cavi, supporti sensore, clip per sonde, mini‑cassetti, barre DIN, porta-breadboard e molto altro). Bastano pochi clic su MakerWorld, Printables o Thingiverse per scaricare l’STL, lanciare la stampa e arricchire il pannello con accessori su misura, espandendo il progetto all’infinito senza costi aggiuntivi.

Il pannello SKÅDIS lo vedo non solo come un supporto fisico, ma è il canvas su cui disegnare, smontare e ricostruire qualunque idea elettronica, sfruttando una community globale che rilascia in continuazione nuovi moduli pronti da stampare, un modo per mantenere ordinato il laboratorio.

I link di seguito indicati vi permettono di accedere ad una lista enorme di oggetti da stampare in 3D ed agganciare al pannello SKÅDIS.

In un prossimo post vi mostrerò come ho realizzato un carrello con piccoli tavolini acquistati all’Ikea per contenere scatole per progetti. Sui lati del carrello ho fissato pannelli SKÅDIS per conservare gli attrezzi di lavoro.

Buon Making a tutti.

EduRobot Circuit Blocks – dalla manualità al PCB: L’Evoluzione di un Apprendimento Pratico dell’elettronica

Nella mia esperienza come giovane studente, l’apprendimento pratico della teoria elettronica ha avuto inizio con l’uso di semplici blocchetti in cui erano inseriti componenti elettronici. Questi blocchetti venivano collegati tra loro mediante cavi dotati di connettori a coccodrillo o banana. Questo sistema, da giovanissimo studente, mi rendeva estremamente semplice la connessione con i puntali dei multimetri digitali, consentendo di realizzare senza sforzi collegamenti in serie e parallelo di resistori e di eseguire misurazioni della resistenza equivalente. Era altresì intuitivo inserire strumenti all’interno di un circuito per misurare correnti e tensioni.

Ricordo con affetto quella fase iniziale, un periodo in cui l’elettronica sembrava un magico puzzle da esplorare e comprendere. Con il tempo, la mia esperienza pratica si è evoluta: sono passato all’uso di breadboard, poi alle basette millefiori e, infine, alla progettazione e realizzazione di PCB.

Tuttavia, recentemente, la mia attività di insegnamento è tornata a quei blocchetti iniziali un po’ per necessità pratica ed un po’ per la gestione di classi “particolari” da motivare. Mi è stato chiesto di ideare lezioni con un’attività di laboratorio della durata di non più di 45 minuti per classi di seconda superiore. Ho constatato che molti studenti non avevano mai avuto esperienza diretta con componenti elettronici o strumenti di misura. Da qui l’idea di reintrodurre l’approccio “manuale” e intuitivo delle mie origini. Ho pensato a blocchetti stampati in 3D in cui inserire i reofori dei resistori, fissati mediante viti e bulloni. Queste viti, estendendo i reofori, facilitano il collegamento con altri resistori mediante connettori a coccodrillo.

Continua a leggere

EduRobot 4WD – Bluetooth

Alcuni lettori hanno notato nella lezione in cui ho condiviso i sorgenti per la stampa 3D del robot, che la scheda motori utilizzata è una Adafruit Motor Shield V01 e mi è stato fatto notare che esiste la V02 della scheda, quindi perché ho usato la versione precedente? La risposta non è tecnica ma economica, ho acquistato ad un prezzo interessante, su uno store cinese, una grande quantità di queste schede che poi ho usato per i miei corsi. Ovviamente nulla vieta che voi possiate utilizzare una qualsiasi altra scheda, la logica di programmazione è la medesima, ma certamente varieranno il nome delle istruzioni che controllano il motore, se avete necessità contattatemi.

Lista componenti

  • N. 1 Arduino UNO R3
  • N. 1 Adafruit Motor Shield V01
  • Modulo Bluetooth HC05
  • N. 4 Motori DC 6V
  • N. 4 Ruote

Di seguito trovate i collegamenti elettrici effettuati e il primo sketch di esempio con cui parto per svolgere le successive esercitazioni. Per gli allievi e i docenti che si iscriveranno ai miei corsi darò ulteriori esempi e spiegazioni.

Lo shield per il controllo motori può gestire fino a 4 motori DC in entrambe le direzioni, ciò vuol dire che possono essere azionati sia in avanti che all’indietro. La velocità può anche essere variata con incrementi dello 0,5% utilizzando PWM integrato sulla scheda, ciò permetterà un movimento uniforme e non brusca del robot.

Il ponte H presente sulla scheda può pilotare carichi NON superiori ai 0,6A o che hanno picchi di richiesta corrente NON superiori a 1,2A, quindi utilizzate questa scheda per piccoli motori, i classici motori gialli da 6V vanno più che bene.

Collegamento motori allo shield Arduino Motor Driver

Come indicato nell’immagine che segue è molto semplice:
– saldate due cavi al motorino (in commercio trovate motori con fili saldati)
– collegate i motori ai morsetti: M1, M2, M3 o M4.

Collegamento scheda Bluetooth HC-05 allo shield Arduino Motor Driver

Come sicuramente saprete, il modulo Bluetooth HC-05 permette di convertire una porta seriale UART in una porta Bluetooth e la utilizzeremo per inviare su seriale i caratteri selezionati da una specifica app Android, per comandare direzione e velocità dei motori del robot.

I collegamenti sono:

HC05 <-> Arduino Motor Driver
RX - Pin 1
TX - Pin 0
G - GND
V - +5V

Orientamento ruote.

Collegamento motori M1 e M2.

Collegamento motori M3 e M4.

Modulo Bluetooth HC-05.

Connessione dei pin RX e TX del modulo Bluetooth HC-05 alla seriale di Arduino (pin 0 e pin 1).

Alimentazione del modulo Bluetooth HC-05 attraverso lo shield.

Alimentazione dello shield.

Continua a leggere

EduRobot 4WD – stampare e costruire il robot

Avevo promesso qualche mese fa che avrei rilasciato i sorgenti grafici di EduRobot 4WD e lo scorso giugno studenti di alcune scuole italiane mi hanno chiesto la cortesia di rendere disponibili i sorgenti per la stampa 3D. Gli impegni di fine anno non mi hanno permesso di essere celere nella pubblicazione e visto che domani è l’inizio di un nuovo anno scolastico rendo disponibile la semplice base robotica in modo che possa essere utilizzata e spero anche migliorata dagli allievi.

Ma qual è l’idea progettuale di base di EduRobot 4WD?

Come ribadito nel post di presentazione di EduRobot 4WD, durante le attività laboratoriali di robotica con studenti e docenti, spesso la costruzione della parte meccanica richiede molta attenzione e tempo. Per questo motivo, ho deciso di realizzare un design semplice, ma funzionale, su cui poter facilmente integrare qualsiasi sistema di controllo elettronico. Pertanto per rendere la programmazione più stimolante e varia, ho progettato un robot 4WD che può avere diverse funzionalità: può essere comandato via Bluetooth o WiFi, può operare autonomamente, seguire persone, reagire alla luce, rilevare gas, seguire una linea, o ancora rispondere ai comandi vocali.

In questa struttura le parti che necessitano di solidità sono vincolate da viti metalliche mentre i circuiti di controllo e le batterie di alimentazione sono fissate con velcro a forte tenuta. L’utilizzo del velcro è stata una soluzione che mi ha permesso di ridurre le fasi di assemblaggio e di modifica della struttura. Ovviamente una struttura di questo genere non è cosa nuova, potete ritrovare design simili realizzati in compensato o in plexiglass su cui ad esempio i motori sono vincolati con colla a caldo, ma ciò ovviamente non permette di riutilizzare velocemente i motori per altre esercitazioni; inoltre le forcelle che vincolano i motori possono essere riutilizzati anche in altri kit che ho sviluppato, si veda ad esempio EduRobot Black Panther.

In questo modello, gli elementi che richiedono maggiore robustezza sono assicurati con viti metalliche, mentre i circuiti di controllo e le batterie di alimentazione sono fissate con velcro a forte tenuta. La scelta del velcro ha notevolmente semplificato e velocizzato le fasi di assemblaggio e modifica. Ovviamente una struttura di questo genere non è cosa nuova, potete ritrovare design simili realizzati in compensato o del plexiglass in cui ad esempio i motori sono vincolati con colla a caldo, ma ciò ovviamente non permette di riutilizzare velocemente i motori per altre esercitazioni; inoltre le forcelle che vincolano i motori possono essere riutilizzati anche in altri kit che ho sviluppato, si veda ad esempio EduRobot Black Panther.

La sequenza di assemblaggio è estremamente semplice, bisogna porre attenzione solo all’orientamento dei motori, ma le foto che seguono mostrano tutti i dettagli che vi permetteranno di assemblare il robot in circa 15 minuti.

Nelle foto potete vedere le due versioni:

  • controllo remoto Bluetooth
  • segui linea

Non posso mostrarvi la versione WiFi e con telecamera in quanto in questo momento sono disassemblati.

Ovviamente se serve, con piccole modifiche, potrete realizzare una versione a più livelli in modo da aggiungere tutti i circuiti che vi servono.

Per prelevare i sorgenti grafici seguire il link su Thingiverse.

Versione Bluetooth

Complessivo.

Vista motori.

Dettaglio forcella motori.

Dettaglio sensore Bluetooth.

Continua a leggere

Un base robotica molto semplice: EduRobot 4WD

Durante le attività di robotica sia con allievi che con docenti la fase di costruzione meccanica può richiedere parecchio tempo, pertanto ho pensato di realizzare qualcosa di molto semplice su cui disporre l’elettronica di controllo che si preferisce. Per rendere più interessante l’attività di programmazione ho realizzato un robot 4WD da utilizzare per costruire diverse tipologie di robot: controllati remotamente via Bluetooth, WiFi, autonomi, inseguitore di persone, inseguitore di luce, rilevatore di gas, line follower, controllato dalla voce umana.

5 minuti di Yoga creativo per recuperare elementi da altri progetti in questo modo è nato EduRobot 4WD, su questa base solamente i fori per le forcelle che sostengono i motori e fori per passaggio cavi, tutto il resto sarà a carico del Maker che farà i fori opportuni con un piccolo trapano o cacciavite in modo da disporre l’elettronica che desidera, costo di stampa dell’intera struttura 1€.

Per chi seguirà il mio prossimo corso di robotica organizzato da Tecnica della Scuola: “Creare un kit robotico educativo a basso costo – 4′ edizione”, renderò disponibile il codice di controllo e nei prossimi giorni per tutti, sul mio sito personale, i file sorgenti per realizzare la struttura di supporto.

Buon Making a tutti 🙂