Archivi categoria: tutorial

Lezione 2 – Corso di Elettronica Creativa con Arduino Sensor Kit

Come ormai tutti sappiamo un LED si presenta come un piccolo componente elettronico che emette luce quando attraversato da corrente elettrica. I LED sono molto usati nella vita di tutti i giorni in vari dispositivi come lampadine, schermi di telefoni e computer, telecomandi, e molto altro.

Immaginate il LED come una lampadina molto piccola, ma molto più efficiente ed ecologica. A differenza delle lampadine tradizionali, che producono luce riscaldando un filamento metallico, i LED producono luce attraverso un processo chiamato “elettroluminescenza”. Questo processo avviene quando la corrente elettrica passa attraverso un semiconduttore (il materiale di cui è costituito il LED) e lo stimola a emettere luce.

Un po’ di storia

Nel corso del primo Novecento, l’ingegnere inglese Henry Joseph Round fece una scoperta rivoluzionaria: l’elettroluminescenza, ovvero la proprietà di certi materiali di emettere luce quando attraversati da corrente elettrica. Da questa scoperta, nascono i LED acronimo di Light Emitting Diode (Diodo a Emissione di Luce), diodi specializzati nell’utilizzare tale fenomeno. Il primo LED, operante nell’infrarosso, venne introdotto nel 1961 e ancora oggi è ampiamente utilizzato in dispositivi come telecomandi e fotocellule.

L’anno successivo alla creazione del primo LED infrarosso, nel 1962, Nick Holonyak Jr. fece un ulteriore passo avanti sviluppando il primo LED rosso, capace di emettere luce visibile direttamente all’occhio umano. Gli studi su questi nuovi diodi proseguirono, focalizzandosi sulle varie applicazioni pratiche, come nell’ambito dei laser, e sull’esplorazione dei materiali necessari per produrre diverse tonalità di luce, combinando più fonti luminose per ottenere una vasta gamma di colori.

Durante gli anni cruciali della ricerca sui LED, un importante contributo venne dall’ingegnere americano M. George Craford, ex studente di Holonyak all’Università dell’Illinois. Nel 1972, Craford realizzò un significativo avanzamento creando i primi LED gialli che furono commercializzati dalla Monsanto, l’azienda per cui lavorava. Dedicate interamente al settore dei LED, le ricerche di Craford furono fondamentali per la loro prima larga diffusione, come dimostra il loro impiego in applicazioni quali semafori e segnalazioni luminose stradali.

Vantaggi nell’uso dei diodi LED

  • Consumano meno energia: sono molto più efficienti delle lampadine tradizionali, il che significa che usano meno elettricità per produrre la stessa quantità di luce.
  • Durano più a lungo: possono funzionare per migliaia di ore prima di dover essere sostituiti.
  • Sono robusti: non contengono filamenti o parti fragili che si possono rompere facilmente.
  • Offrono diverse colorazioni: i LED possono emettere luce di vari colori senza l’uso di filtri colorati.

Un esempio pratico molto semplice che potete realizzare a scuola è collegare un LED a una batteria con un piccolo resistore (di seguito sono fornite le indicazioni per il calcolo del valore del resistore) per limitare la corrente e proteggere il LED: noterete come si illumina, dimostrando in modo semplice ed efficace come funziona.

Struttura Fisica del LED

Un LED è composto principalmente da un chip di materiale semiconduttore in cui sono presenti impurità per creare una giunzione P-N. La giunzione è dove avviene l’elettroluminescenza (emissione di luce). Il chip è incapsulato in un guscio di plastica o vetro, che può essere modellato per focalizzare o diffondere la luce. I LED hanno due terminali: un anodo (+) e un catodo (-). La corrente elettrica fluisce dall’anodo al catodo, e questo flusso di corrente permette al LED di emettere luce.

Modalità di Polarizzazione

Per funzionare correttamente, un LED deve essere polarizzato in modo diretto, il che significa che l’anodo deve essere collegato al polo positivo della fonte di alimentazione e il catodo al polo negativo. Se il LED è collegato al contrario (polarizzazione inversa), non si accenderà perché la corrente non può fluire attraverso di esso nel modo giusto.

Calcolo della Resistenza Serie

Per proteggere il LED da correnti eccessive, si usa una resistore connesso in serie. Il calcolo di questa della resistenza (R) dipende dalla tensione di alimentazione (VS), dalla tensione del LED (VI​) e dalla corrente desiderata attraverso il LED (ILED​):

Dove:

  • VS​ è la tensione di alimentazione
  • VLED​ è la tensione di funzionamento del LED, tipicamente tra 1.8V e 3.3V a seconda del colore
  • ILED​ è la corrente di funzionamento desiderata per il LED, solitamente intorno a 20mA per la maggior parte dei LED, ma può variare.

Corrente di Funzionamento e Colore

La corrente di funzionamento del LED influisce sulla luminosità, ma anche il colore del LED ha un ruolo nella determinazione della tensione di funzionamento. Ecco alcune tensioni di funzionamento approssimative in base al colore:

  • Rosso: 1.8V – 2.2V
  • Verde: 2.0V – 3.0V
  • Blu, Bianco, UV: 3.0V – 3.5V

Questi valori possono variare a seconda del tipo specifico di LED. Per un funzionamento sicuro, è essenziale controllare le specifiche del produttore del LED che si sta utilizzando.

Ricordate, utilizzare un resistore di valore adeguato è cruciale per prevenire il danneggiamento del LED a causa di una corrente troppo elevata. Il calcolo della resistenza in serie aiuta a garantire che il LED riceva la corrente corretta per il suo ottimale funzionamento e durata.

Di seguito un esempio di collegamenti per controllare l’accensione di un diodo LED rosso:

Materiali Necessari

  • 1 LED rosso
  • 1 resistenza (calcoleremo il valore)
  • 1 batteria (per esempio, una batteria da 9V)
  •  Cavi di collegamento

Calcolo della Resistenza

Prima di collegare il circuito, dobbiamo calcolare il valore della resistenza necessaria per proteggere il LED. Supponendo che il LED rosso abbia una tensione di funzionamento di circa 2V e che la corrente ideale per il LED sia di 20mA (0,02A), usiamo una batteria da 9V come alimentazione. Il calcolo della resistenza (R) si basa sulla formula precedentemente indicata dove:

  • Vs, tensione di alimentazione vale 9V
  • VLED​, tensione di funzionamento del LED vale 2V per un LED rosso
  • ILED, corrente di funzionamento desiderata per il LED, vale 0,02A (2 mA)

Sostituendo i valori nella formula otteniamo:

Il valore 350 Ohm è quello calcolato, bisognerà quindi ora scegliere il valore commerciale prossimo al valore calcolato, si potrà scegliere quindi tra 330 Ohm o 360 Ohm.

Collegamento del Circuito

  1. Collega un’estremità della resistenza a uno dei terminali della batteria (il polo positivo, se state usando un portabatterie con i cavi già attaccati).
  2. Collega l’altra estremità della resistenza al terminale più lungo (anodo) del LED. L’anodo è il lato positivo del LED.
  3. Collega il terminale più corto (catodo) del LED al polo negativo della batteria. Puoi fare questo direttamente o usando un cavo.
  4. Una volta completato il collegamento, il LED dovrebbe accendersi. Se non si accende, verifica i collegamenti e assicurati che la batteria sia carica.

Ricordate come detto sopra, è importante non invertire la polarità del LED, perché non si illuminerà se collegato al contrario.

Nel modulo Grove LED incluso nell’Arduino Sensor Kit, la resistenza di limitazione della corrente è già integrata sul PCB (circuito stampato), quindi, non c’è bisogno di preoccuparsi di aggiungere manualmente una resistenza esterna quando lo usate; questa parte del lavoro è già stata fatta per voi. Questo tipo di collegamento verrà approfondito in un corso successivo.

Ricordate, state partecipando a un corso introduttivo il cui scopo è guidarvi, passo dopo passo, nel mondo della programmazione e nella realizzazione di sistemi elettronici. Questo approccio semplificato vi permette di concentrarvi sull’apprendimento delle basi, evitando inizialmente di soffermarvi troppo sui dettagli tecnici.

Utilizzare l’Arduino Sensor Kit

Le funzioni che verranno usate nei programmi che seguono saranno le seguenti:

pinMode()
La funzione pinMode() in Arduino è essenziale per impostare la modalità di funzionamento di uno specifico pin della scheda Arduino. Questa funzione permette di definire se un pin deve comportarsi come un ingresso (input) ovvero riceve un segnale in ingresso o come un’uscita (output) ovvero fornisce un segnale in uscita.

digitalWrite()
La funzione digitalWrite() in Arduino è utilizzata per scrivere un valore HIGH (1 logico corrispondente a 5V) o LOW (0 logico, corrispondente a 0V) su un pin configurato come OUTPUT. Questo permette di controllare dispositivi elettronici come LED, motori e altri componenti elettronici.

delay()
La funzione delay() in Arduino è utilizzata per introdurre un ritardo nel programma per un determinato numero di millisecondi. Durante questo ritardo, il programma si ferma e non esegue altre istruzioni. Questo può essere utile per controllare il timing di varie operazioni, come il lampeggio di un LED, il ritardo tra due azioni. Vedremo in lezioni successive come utilizzare un’altra tecnica per la gestione dei ritardi che permette di non bloccare l’intera esecuzione del programma.

Sketch 1

1// Prof. Maffucci Michele
2// Blink del LED connesso al pin digitale 6
3 
4// #define permette di assegnare un none ad un valore costante prima che
5// il programma venga compilato.
6// Le costanti così definite non occupano spazio nella memoria del mirocontrollore
7 
8#define LED 6
9 
10void setup() {
11// inserire quì il codice che deve essere eseguito una sola volta
12// dal momento che colleghi all'alimentazione Arduino
13pinMode(LED, OUTPUT); // con pinMode indichiamo come verrà usato il pin, in questo caso come output
14}
15 
16void loop() {
17// Inseriamo nel loop il codice che vogliamo
18// venga ripetuto continuamente
19 
20digitalWrite(LED, HIGH); // Imposta ad HIGH (5V) la tensione sull'anodo del LED
21delay(1000); // Attesa di 1000 millisecondi
22digitalWrite(LED, LOW); // Imposta ad LOW (0V) la tensione sull'anodo del LED
23delay(1000); // Attesa di 1000 millisecondi
24}

Sketch 2

Continua a leggere

BBC microbit – Pixel per Pixel – uso dell’Istruzione plot

Nel corso delle nostre avventure creative durante il corso “Carta, Cartone e Coding”, abbiamo esplorato attività in cui la creatività e l’arte incontra la tecnologia, trasformando idee astratte in realtà tangibili. Uno degli strumenti che abbiamo utilizzato per dare vita alle nostre creazioni è il BBC micro:bit.

Tra le numerose domande che mi avete inviato via mail alcune fanno riferimento all’uso dell’istruzione “plot”. Capisco che, per chi si avvicina per la prima volta a questi concetti, ci possano essere alcuni dubbi su come funzioni esattamente e su come possa essere applicata in modo efficace nelle nostre attività didattiche e in questo breve post voglio fornirvi una possibile soluzione che sfrutto molto spesso per mostrare il comportamento di istruzioni for nidificate.

L’istruzione “plot” è estremamente utile quando lavoriamo con il display LED del micro:bit, che come sapete è costituito da una matrice composto da 25 LED disposti in una griglia 5×5. L’istruzione plot ci permette di accendere un singolo LED sulla griglia, specificando le sue coordinate (x, y).

Come funziona?

  • x rappresenta la posizione orizzontale del LED, partendo da 0 (il lato più a sinistra) fino a 4 (il lato più a destra).
  • y indica la posizione verticale, anch’essa partendo da 0 (in alto) fino a 4 (in basso).

Utilizzando “plot(x, y)”, possiamo quindi selezionare esattamente quale LED accendere, permettendoci di creare disegni, lettere, numeri o qualsiasi altro tipo di segnale visivo che possiamo immaginare.

Vediamo alcuni semplici esempi.

Esempio 01

Accensione sequenziale di tutti i LED sul display del micro:bit dall’alto verso il basso, un colonna alla volta partendo dall’angolo in alto a sinistra del display.

Link al programma.

Esempio 02

Movimento di una pallina sul display. Accensione sequenziale dei LED sul display del micro:bit dall’alto verso il basso, un colonna alla volta partendo dall’angolo in alto a sinistra del display. Il ciclo si ripete all’infinito.

Link al programma.

Esempio 03

Accensione sequenziale di tutti i LED sul display del micro:bit dall’alto verso il basso, un colonna alla volta partendo dall’angolo in alto a sinistra del display, con cancellazione finale del display e ripartenza sequenza.

Link al programma.

Per tutti gli esercizi invertendo nei cicli for le variabili “x” e “y” si avrà un movimento da destra verso sinistra.

Buon Coding a tutti 🙂

MicroCode – Language – Lezione 4

Editor delle risorse

Sono disponibili due editor, uno che permette la creazione di loghi 5×5 ed uno per la creazione di semplici melodie.

Editor icone LED

L’editor di icone LED permette di selezionare quali LED sono accesi o spenti per ogni  fotogramma di un’animazione. E’ possibile continuare ad aggiungere icone LED in una sequenza (l’editor farà una copia dell’ultima immagine realizzata):

Editor di melodie

L’editor di melodie ti permette di comporre una sequenza di quattro note, dove ogni nota può essere C, D, E, F o G:

Gestire valori numerici

Per i comandi che prevedono un valore numerico come: radio send, imposta variabile), sono disponibili vari blocchi:

  •  constant values 1, 2, 3, 4 e 5 punti
  •  values of variables X, Y e Z
  •  value of the radio receive event , disponibile solo se la sezione WHEN (QUANDO) ha un evento ricezione radio
  • value of the temperature sensor , sempre disponibile
  • random number generator un dado che fornisce in modo predefinito un numero intero casuale tra 1 e 5 (estremi inclusi).

loops

repeat

Il blocco repeat può essere aggiunta ad una serie di comandi per ripetere l’intera sezione DO. Il blocco valore, dopo repeat, determinano il numero di iterazioni. Se non viene fornito un valore, la ripetizione viene eseguita all’infinito.

WHEN: premi il logo micro:bit, DO: viene visualizzato il logo happy e il logo serio sul display e la visualizzazione dei due loghi viene mostrata per tre volte (la sequenza loghi è seguita dal repeat e dal blocco tre puntini).

Buon Coding a tutti 🙂

MicroCode – Language – Lezione 3

Sezione “QUANDO”

Il lato sinistro di una regola, la sezione “QUANDO“, inizia con un blocco di un evento che può essere inserito dalla finestra di dialogo che appare quando viene selezionato selezioni il blocco vuoto più a sinistra di una regola:

  • press pressione del pulsante, icona micro:bit, o pin
  • release rilascio del pulsante, icona micro:bit, o pin
  • move movimento dell’accelerometro, in vari modi
  • hear sentire un suono, sia forte che soffuso
  • cambio di temperatura variazione di temperatura, sia più calda che più fredda
  • ricezione radio ricezione via radio di un numero
  • inizio pagina inizia pagina si avvia solo quando la pagina viene avviata (o selezionata), con un ritardo opzionale
  • timer timer di un tempo
  • variabile (X,Y,Z) cambiato con un numero

Se la sezione “QUANDO” viene lasciata vuota, la regola verrà eseguita una sola volta quando la pagina viene avviata.

Eventi, parametri e condizioni

Un blocco evento può essere seguito:

  • da nessun blocco;
  • uno o più blocchi di parametro che determinano le condizioni sotto le quali l’esecuzione procederà dalla sezione “Quando” alla sezione “Fai”.

Ogni evento ha un parametro predefinito, che viene utilizzato quando non viene specificato alcun parametro. I valori predefiniti sono:

press, il valore predefinito del button A ; altre opzioni includono button B , micro:bit logo, pin 0 , pin 1 , pin 2 !
release, i valori predefiniti e le opzioni sono gli stessi di press

La finestra di dialogo sottostante mostra i parametri associati agli eventi di press/release del pulsante.

In funzione dell’evento verranno mostrati parametri diversi.

Condizioni sui valori degli eventi

Quando un evento ha un valore numerico (nel caso della ricezione di un messaggio radio o di un aggiornamento di una variabile), se tale valore è uguale alla somma dei valori (costanti e variabili) che seguono, allora l’esecuzione proseguirà alla sezione “Fai”. Ecco i cinque valori (punti) disponibili:

  • 1 dot:
  • 2 dot:
  • 3 dot:
  • 4 dot:
  • 5 dot:

Il timer è parametrizzato con vari tempi che possono anche essere sequenziati e sommati:

  • 1/4 di secondo:
  • 1 secondo:
  • 5 secondi:
  • ? secondi: – da 0 a 1 secondo, scelto casualmente

Nel caso del timer, la somma specifica la quantità di tempo con cui avviare il timer.

Sezione “Fai”

Il lato destro di una regola, la sezione “Fai”, inizia con uno dei blocchi di comando presenti nella lista che segue:

  • show image mostra una sequenza di animazione sullo schermo LED.
  • show number mostra numero visualizza un valore numerico tra 0 e 99
  • sound emoji riproduce una sequenza di emoji
  • play notes riproduce una sequenza di note (dalla scala di Do maggiore)
  • radio send invia un numero dato tramite la radio
  • radio set group prende un numero e garantisce che i messaggi radio da un diverso numero di gruppo vengano ignorati (il gruppo radio predefinito è 1, il che significa che tutti i micro:bit vedono tutti i messaggi)
  • switch page trasferisce il controllo dell’esecuzione a una pagina specifica
  • set variable inserisce un numero in una variabile (X, Y, Z); predefinito a 0 se non viene specificato nessun valore; inoltre imposta e

Un comando può essere seguito da vari blocchi di parametro, a seconda del tipo di comando.

Come per gli eventi, ogni comando ha un parametro predefinito, nel caso in cui non venga dato alcun blocco di parametro i parametri predefiniti sono:

  • screen mostra di default una faccia felice
  • sound emoji riproduce di default l’emoji giggle
  • radio invia il numero 1 come predefinito
  • switch passa di default alla pagina 1
  • get prende il valore da una variabile (X, Y, Z); se la variabile non era stata precedentemente impostata il valore predefinito è 0. Ciò vale anche per e

Buon Coding a tutti 🙂

MicroCode – Language – Lezione 2

In questa seconda lezione vedremo come realizzare il primo programma in MicroCode. L’immagine sottostante mostra un programma di una pagina con quattro regole (blocchi istruzione When – Do)

Nel video i passi di realizzazione in cui viene evidenziato l’help contestuale al passaggio del mouse sulle istruzioni.

Le prime due regole si attivano quando viene premuto A.

  • quando premi il pulsante A, fai mostra la sequenza delle due icone che mostrano una faccina che ride sul display del micro:bit

  • quando premi il pulsante A, fai suonare il micro:bit con il suono “faccina felice”

Le altre regole sono simili ma si attivano per il pulsante B; alla pressione viene mostrata una sequenza di faccine tristi ed emesso il suono “triste”.

Pagine ed esecuzione delle regole

L’esecuzione del programma MicroCode inizia sulla pagina 1. Tutte le regole su quella pagina sono attive. Le regole presenti su un’altra pagina diventano attive solo quando il programma passa a quella pagina (tramite un comando esplicito di cambio pagina, che verrà mostrato più avanti. Qualsiasi regola che potrebbe essere ancora in esecuzione sulla pagina corrente (come un’animazione in un ciclo) viene terminata prima che avvenga il cambio di pagina, non si possono mai avere regole in esecuzione allo stesso momento su pagine diverse.

All’avvio del timer viene visualizzata una sequenza di icone (seconda regola) e contemporaneamente dopo 5 secondi dall’avvio del timer più un tempo casuale si passa alla pagina 2 (prima regola).

Al passaggio alla pagina 2 viene mostrata l’immagine di una faccina che ride (prima regola) ed emesso un suono “felice” (seconda regola).

Nel video vengono mostrati i passi di realizzazione del programma e la modalità di creazione e passaggio alla pagina 2.

Eventi e ordine di esecuzione delle regole

Gli eventi, azioni che innescano le regole costituite da blocchi “Quando – Fai”, sono elaborati da MicroCode uno alla volta. Ad esempio, se vengono premuti i pulsanti A e B nello stesso momento (approssimativamente), MicroCode elaborerà o A prima di B o B prima di A.
Per un dato evento, MicroCode elabora l’evento eseguendo le regole per quel determinato evento nell’ordine in cui appaiono sulla pagina corrente. Per ogni regola, viene valutata se le condizioni sull’evento nella sezione “Quando” sono soddisfatte e, in caso affermativo, avviare la sezione “Fai” della regola.

Terminazione della regola

La maggior parte dei comandi nella sezione “Fai”, come ad esempio assegnare ad una variabile un valore, viene completata rapidamente; altri comandi invece richiedono un tempo di esecuzione proporzionale alla lunghezza della sequenza, come ad esempio la visualizzazione di una sequenza di icone, inoltre un’animazione o un suono, possono essere ripetuta più volte (o indefinitamente) utilizzando un blocco “ripeti” (che vedremo nelle prossime lezioni). Nel caso di un’animazione, una regola in esecuzione che utilizza lo schermo del micro:bit, verrà terminata se viene avviata una nuova regola che utilizza anche lo schermo del micro:bit.

Buon Making a tutti 🙂